» Articles » PMID: 36951404

Avoiding Misleading Estimates Using MtDNA Heteroplasmy Statistics to Study Bottleneck Size and Selection

Overview
Journal G3 (Bethesda)
Date 2023 Mar 23
PMID 36951404
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial DNA heteroplasmy samples can shed light on vital developmental and genetic processes shaping mitochondrial DNA populations. The sample means and sample variance of a set of heteroplasmy observations are typically used both to estimate bottleneck sizes and to perform fits to the theoretical "Kimura" distribution in seeking evidence for mitochondrial DNA selection. However, each of these applications raises problems. Sample statistics do not generally provide optimal fits to the Kimura distribution and so can give misleading results in hypothesis testing, including false positive signals of selection. Using sample variance can give misleading results for bottleneck size estimates, particularly for small samples. These issues can and do lead to false positive results for mitochondrial DNA mechanisms-all published experimental datasets we re-analyzed, reported as displaying departures from the Kimura model, do not in fact give evidence for such departures. Here we outline a maximum likelihood approach that is simple to implement computationally and addresses all of these issues. We advocate the use of maximum likelihood fits and explicit hypothesis tests, not fits and Kolmogorov-Smirnov tests via summary statistics, for ongoing work with mitochondrial DNA heteroplasmy.

Citing Articles

Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans.

Gitschlag B, Pereira C, Held J, McCandlish D, Patel M Nat Commun. 2024; 15(1):8237.

PMID: 39300074 PMC: 11413162. DOI: 10.1038/s41467-024-52596-9.


Evolution and maintenance of mtDNA gene content across eukaryotes.

Veeraragavan S, Johansen M, Johnston I Biochem J. 2024; 481(15):1015-1042.

PMID: 39101615 PMC: 11346449. DOI: 10.1042/BCJ20230415.


Single-cell analysis reveals context-dependent, cell-level selection of mtDNA.

Kotrys A, Durham T, Guo X, Vantaku V, Parangi S, Mootha V Nature. 2024; 629(8011):458-466.

PMID: 38658765 PMC: 11078733. DOI: 10.1038/s41586-024-07332-0.


Stochastic organelle genome segregation through Arabidopsis development and reproduction.

Broz A, Sloan D, Johnston I New Phytol. 2023; 241(2):896-910.

PMID: 37925790 PMC: 10841260. DOI: 10.1111/nph.19288.

References
1.
Monnot S, Gigarel N, Samuels D, Burlet P, Hesters L, Frydman N . Segregation of mtDNA throughout human embryofetal development: m.3243A>G as a model system. Hum Mutat. 2010; 32(1):116-25. PMC: 3058134. DOI: 10.1002/humu.21417. View

2.
Jokinen R, Marttinen P, Stewart J, Dear T, Battersby B . Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division. Hum Mol Genet. 2015; 25(4):706-14. DOI: 10.1093/hmg/ddv508. View

3.
De Stordeur E, Solignac M, Monnerot M, Mounolou J . The generation of transplasmic Drosophila simulans by cytoplasmic injection: effects of segregation and selection on the perpetuation of mitochondrial DNA heteroplasmy. Mol Gen Genet. 1989; 220(1):127-32. DOI: 10.1007/BF00260866. View

4.
Wonnapinij P, Chinnery P, Samuels D . The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet. 2008; 83(5):582-93. PMC: 2668051. DOI: 10.1016/j.ajhg.2008.10.007. View

5.
Johnston I . Varied Mechanisms and Models for the Varying Mitochondrial Bottleneck. Front Cell Dev Biol. 2019; 7:294. PMC: 6879659. DOI: 10.3389/fcell.2019.00294. View