» Articles » PMID: 26281784

The Dynamics of Mitochondrial DNA Heteroplasmy: Implications for Human Health and Disease

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2015 Aug 19
PMID 26281784
Citations 421
Authors
Affiliations
Soon will be listed here.
Abstract

Common genetic variants of mitochondrial DNA (mtDNA) increase the risk of developing several of the major health issues facing the western world, including neurodegenerative diseases. In this Review, we consider how these mtDNA variants arose and how they spread from their origin on one single molecule in a single cell to be present at high levels throughout a specific organ and, ultimately, to contribute to the population risk of common age-related disorders. mtDNA persists in all aerobic eukaryotes, despite a high substitution rate, clonal propagation and little evidence of recombination. Recent studies have found that de novo mtDNA mutations are suppressed in the female germ line; despite this, mtDNA heteroplasmy is remarkably common. The demonstration of a mammalian mtDNA genetic bottleneck explains how new germline variants can increase to high levels within a generation, and the ultimate fixation of less-severe mutations that escape germline selection explains how they can contribute to the risk of late-onset disorders.

Citing Articles

Mitochondrial genetics, signalling and stress responses.

Liu Y, Sulc J, Auwerx J Nat Cell Biol. 2025; 27(3):393-407.

PMID: 40065146 DOI: 10.1038/s41556-025-01625-w.


Mitochondrial damage in muscle specific PolG mutant mice activates the integrated stress response and disrupts the mitochondrial folate cycle.

Bond S, King E, Walker S, Yang C, Liu Y, Liu K Nat Commun. 2025; 16(1):2338.

PMID: 40057508 PMC: 11890779. DOI: 10.1038/s41467-025-57299-3.


Evolution, genetic diversity, and health.

Palma-Martinez M, Posadas-Garcia Y, Shaukat A, Lopez-Angeles B, Sohail M Nat Med. 2025; .

PMID: 40055519 DOI: 10.1038/s41591-025-03558-1.


Origin and cell type specificity of mitochondrial DNA mutations in ALS-FTLD human brain organoids.

Nie Y, Szebenyi K, Wenger L, Lakatos A, Chinnery P Sci Adv. 2025; 11(10):eadr0690.

PMID: 40053600 PMC: 11887808. DOI: 10.1126/sciadv.adr0690.


Cryptic mitochondrial DNA mutations coincide with mid-late life and are pathophysiologically informative in single cells across tissues and species.

Green A, Klimm F, Marshall A, Leetmaa R, Aryaman J, Gomez-Duran A Nat Commun. 2025; 16(1):2250.

PMID: 40050638 PMC: 11885543. DOI: 10.1038/s41467-025-57286-8.


References
1.
Pagliarini D, Calvo S, Chang B, Sheth S, Vafai S, Ong S . A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008; 134(1):112-23. PMC: 2778844. DOI: 10.1016/j.cell.2008.06.016. View

2.
Bandelt H, Yao Y, Salas A, Kivisild T, Bravi C . High penetrance of sequencing errors and interpretative shortcomings in mtDNA sequence analysis of LHON patients. Biochem Biophys Res Commun. 2006; 352(2):283-91. DOI: 10.1016/j.bbrc.2006.10.131. View

3.
Payne B, Wilson I, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R . Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet. 2012; 22(2):384-90. PMC: 3526165. DOI: 10.1093/hmg/dds435. View

4.
Kirkman M, Yu-Wai-Man P, Korsten A, Leonhardt M, Dimitriadis K, De Coo I . Gene-environment interactions in Leber hereditary optic neuropathy. Brain. 2009; 132(Pt 9):2317-26. PMC: 2732267. DOI: 10.1093/brain/awp158. View

5.
Takeda K, Takahashi S, Onishi A, Hanada H, Imai H . Replicative advantage and tissue-specific segregation of RR mitochondrial DNA between C57BL/6 and RR heteroplasmic mice. Genetics. 2000; 155(2):777-83. PMC: 1461126. DOI: 10.1093/genetics/155.2.777. View