» Articles » PMID: 29950599

Large-scale Genetic Analysis Reveals Mammalian MtDNA Heteroplasmy Dynamics and Variance Increase Through Lifetimes and Generations

Overview
Journal Nat Commun
Specialty Biology
Date 2018 Jun 29
PMID 29950599
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Vital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models. We provide a novel and detailed quantitative characterisation of the linear increase in heteroplasmy variance throughout mammalian life courses in oocytes and pups. We find that differences in mean heteroplasmy are induced between generations, and the heteroplasmy of germline and somatic precursors diverge early in development, with a haplotype-specific direction of segregation. We develop stochastic theory predicting the implications of these dynamics for ageing and disease manifestation and discuss its application to human mtDNA dynamics.

Citing Articles

Aging-associated accumulation of mitochondrial DNA mutations in tumor origin.

Kong M, Guo L, Xu W, He C, Jia X, Zhao Z Life Med. 2025; 1(2):149-167.

PMID: 39871923 PMC: 11749795. DOI: 10.1093/lifemedi/lnac014.


Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level.

Roussou R, Metzler D, Padovani F, Thoma F, Schwarz R, Shraiman B EMBO J. 2024; 43(22):5340-5359.

PMID: 39103491 PMC: 11574196. DOI: 10.1038/s44318-024-00183-5.


Evolution and maintenance of mtDNA gene content across eukaryotes.

Veeraragavan S, Johansen M, Johnston I Biochem J. 2024; 481(15):1015-1042.

PMID: 39101615 PMC: 11346449. DOI: 10.1042/BCJ20230415.


Children born after assisted reproduction more commonly carry a mitochondrial genotype associating with low birthweight.

Mertens J, Belva F, van Montfoort A, Regin M, Zambelli F, Seneca S Nat Commun. 2024; 15(1):1232.

PMID: 38336715 PMC: 10858059. DOI: 10.1038/s41467-024-45446-1.


Stochastic organelle genome segregation through Arabidopsis development and reproduction.

Broz A, Sloan D, Johnston I New Phytol. 2023; 241(2):896-910.

PMID: 37925790 PMC: 10841260. DOI: 10.1111/nph.19288.


References
1.
Kann L, Rosenblum E, Rand D . Aging, mating, and the evolution of mtDNA heteroplasmy in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1998; 95(5):2372-7. PMC: 19350. DOI: 10.1073/pnas.95.5.2372. View

2.
Stewart J, Chinnery P . The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015; 16(9):530-42. DOI: 10.1038/nrg3966. View

3.
Fan W, Waymire K, Narula N, Li P, Rocher C, Coskun P . A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science. 2008; 319(5865):958-62. PMC: 3049809. DOI: 10.1126/science.1147786. View

4.
Elson J, Samuels D, Turnbull D, Chinnery P . Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet. 2001; 68(3):802-6. PMC: 1274494. DOI: 10.1086/318801. View

5.
Royrvik E, Burgstaller J, Johnston I . mtDNA diversity in human populations highlights the merit of haplotype matching in gene therapies. Mol Hum Reprod. 2016; 22(11):809-817. DOI: 10.1093/molehr/gaw062. View