» Articles » PMID: 36928528

The Spatial Landscape of Gene Expression Isoforms in Tissue Sections

Overview
Specialty Biochemistry
Date 2023 Mar 17
PMID 36928528
Authors
Affiliations
Soon will be listed here.
Abstract

In situ capturing technologies add tissue context to gene expression data, with the potential of providing a greater understanding of complex biological systems. However, splicing variants and full-length sequence heterogeneity cannot be characterized at spatial resolution with current transcriptome profiling methods. To that end, we introduce spatial isoform transcriptomics (SiT), an explorative method for characterizing spatial isoform variation and sequence heterogeneity using long-read sequencing. We show in mouse brain how SiT can be used to profile isoform expression and sequence heterogeneity in different areas of the tissue. SiT reveals regional isoform switching of Plp1 gene between different layers of the olfactory bulb, and the use of external single-cell data allows the nomination of cell types expressing each isoform. Furthermore, SiT identifies differential isoform usage for several major genes implicated in brain function (Snap25, Bin1, Gnas) that are independently validated by in situ sequencing. SiT also provides for the first time an in-depth A-to-I RNA editing map of the adult mouse brain. Data exploration can be performed through an online resource (https://www.isomics.eu), where isoform expression and RNA editing can be visualized in a spatial context.

Citing Articles

A systematic benchmark of Nanopore long-read RNA sequencing for transcript-level analysis in human cell lines.

Chen Y, Davidson N, Kei Wan Y, Yao F, Su Y, Gamaarachchi H Nat Methods. 2025; .

PMID: 40082608 DOI: 10.1038/s41592-025-02623-4.


Application of Spatial Transcriptomics in Digestive System Tumors.

Huang B, Chen Y, Yuan S Biomolecules. 2025; 15(1).

PMID: 39858416 PMC: 11761220. DOI: 10.3390/biom15010021.


Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy.

An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J Front Immunol. 2025; 15:1499301.

PMID: 39749323 PMC: 11693744. DOI: 10.3389/fimmu.2024.1499301.


Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics.

Belchikov N, Hsu J, Li X, Jarroux J, Hu W, Joglekar A Genome Res. 2024; 34(11):1735-1746.

PMID: 39567235 PMC: 11610585. DOI: 10.1101/gr.279640.124.


Integrative spatial and genomic analysis of tumor heterogeneity with Tumoroscope.

Shafighi S, Geras A, Jurzysta B, Sahaf Naeini A, Filipiuk I, Ra Czkowska A Nat Commun. 2024; 15(1):9343.

PMID: 39472583 PMC: 11522407. DOI: 10.1038/s41467-024-53374-3.


References
1.
Salpietro V, Dixon C, Guo H, Bello O, Vandrovcova J, Efthymiou S . AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun. 2019; 10(1):3094. PMC: 6626132. DOI: 10.1038/s41467-019-10910-w. View

2.
Stahl P, Salmen F, Vickovic S, Lundmark A, Fernandez Navarro J, Magnusson J . Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016; 353(6294):78-82. DOI: 10.1126/science.aaf2403. View

3.
Licht K, Kapoor U, Amman F, Picardi E, Martin D, Bajad P . A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res. 2019; 29(9):1453-1463. PMC: 6724681. DOI: 10.1101/gr.242636.118. View

4.
Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J . Molecular Architecture of the Mouse Nervous System. Cell. 2018; 174(4):999-1014.e22. PMC: 6086934. DOI: 10.1016/j.cell.2018.06.021. View

5.
Chen P, Yin J, Guo Y, Xiao H, Wang X, DiSanto M . The expression and functional activities of smooth muscle myosin and non-muscle myosin isoforms in rat prostate. J Cell Mol Med. 2017; 22(1):576-588. PMC: 5742693. DOI: 10.1111/jcmm.13345. View