» Articles » PMID: 36793591

A Scalable Hierarchical Lasso for Gene-environment Interactions

Overview
Date 2023 Feb 16
PMID 36793591
Authors
Affiliations
Soon will be listed here.
Abstract

We describe a regularized regression model for the selection of gene-environment (G×E) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (G×E) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.

Citing Articles

Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.

St-Pierre J, Oualkacha K, Rai Bhatnagar S Stat Methods Med Res. 2024; 34(1):180-198.

PMID: 39659138 PMC: 11800719. DOI: 10.1177/09622802241293768.


Gene-environment interactions in human health.

Herrera-Luis E, Benke K, Volk H, Ladd-Acosta C, Wojcik G Nat Rev Genet. 2024; 25(11):768-784.

PMID: 38806721 DOI: 10.1038/s41576-024-00731-z.


Gene-environment interaction analysis via deep learning.

Wu S, Xu Y, Zhang Q, Ma S Genet Epidemiol. 2023; 47(3):261-286.

PMID: 36807383 PMC: 10244912. DOI: 10.1002/gepi.22518.

References
1.
Friedman J, Hastie T, Tibshirani R . Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010; 33(1):1-22. PMC: 2929880. View

2.
Chang B, Watanabe K, Broude E, Fang J, Poole J, Kalinichenko T . Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases. Proc Natl Acad Sci U S A. 2000; 97(8):4291-6. PMC: 18232. DOI: 10.1073/pnas.97.8.4291. View

3.
Papaconstantinou J . The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells. 2019; 8(11). PMC: 6912541. DOI: 10.3390/cells8111383. View

4.
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S . Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2012; 49(2):359-367. PMC: 3780611. DOI: 10.1016/j.molcel.2012.10.016. View

5.
Liu J, Huang J, Zhang Y, Lan Q, Rothman N, Zheng T . Identification of gene-environment interactions in cancer studies using penalization. Genomics. 2013; 102(4):189-94. PMC: 3869641. DOI: 10.1016/j.ygeno.2013.08.006. View