» Articles » PMID: 28316461

Convex Modeling of Interactions with Strong Heredity

Overview
Date 2017 Mar 21
PMID 28316461
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

Citing Articles

Regression in tensor product spaces by the method of sieves.

Zhang T, Simon N Electron J Stat. 2025; 17(2):3660-3727.

PMID: 39897081 PMC: 11784939. DOI: 10.1214/23-ejs2188.


Hierarchical False Discovery Rate Control for High-dimensional Survival Analysis with Interactions.

Liang W, Zhang Q, Ma S Comput Stat Data Anal. 2023; 192.

PMID: 38098875 PMC: 10718515. DOI: 10.1016/j.csda.2023.107906.


A General Framework for Identifying Hierarchical Interactions and Its Application to Genomics Data.

Xiao Z, Xingjie S, Yiming L, Xu L, Ma S J Comput Graph Stat. 2023; 32(3):873-883.

PMID: 38009111 PMC: 10671243. DOI: 10.1080/10618600.2022.2152034.


A scalable hierarchical lasso for gene-environment interactions.

Zemlianskaia N, Gauderman W, Lewinger J J Comput Graph Stat. 2023; 31(4):1091-1103.

PMID: 36793591 PMC: 9928188. DOI: 10.1080/10618600.2022.2039161.


A Pliable Lasso.

Tibshirani R, Friedman J J Comput Graph Stat. 2022; 29(1):215-225.

PMID: 36340327 PMC: 9631466. DOI: 10.1080/10618600.2019.1648271.


References
1.
Bien J, Taylor J, Tibshirani R . A LASSO FOR HIERARCHICAL INTERACTIONS. Ann Stat. 2015; 41(3):1111-1141. PMC: 4527358. DOI: 10.1214/13-AOS1096. View

2.
Rhee S, Taylor J, Wadhera G, Ben-Hur A, Brutlag D, Shafer R . Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc Natl Acad Sci U S A. 2006; 103(46):17355-60. PMC: 1622926. DOI: 10.1073/pnas.0607274103. View

3.
Wu J, Devlin B, Ringquist S, Trucco M, Roeder K . Screen and clean: a tool for identifying interactions in genome-wide association studies. Genet Epidemiol. 2010; 34(3):275-85. PMC: 2915560. DOI: 10.1002/gepi.20459. View

4.
Park M, Hastie T . Penalized logistic regression for detecting gene interactions. Biostatistics. 2007; 9(1):30-50. DOI: 10.1093/biostatistics/kxm010. View

5.
Lim M, Hastie T . Learning interactions via hierarchical group-lasso regularization. J Comput Graph Stat. 2016; 24(3):627-654. PMC: 4706754. DOI: 10.1080/10618600.2014.938812. View