» Articles » PMID: 36697795

Chemical Communication at the Synthetic Cell/living Cell Interface

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 25
PMID 36697795
Authors
Affiliations
Soon will be listed here.
Abstract

Although the complexity of synthetic cells has continued to increase in recent years, chemical communication between protocell models and living organisms remains a key challenge in bottom-up synthetic biology and bioengineering. In this Review, we discuss how communication channels and modes of signal processing can be established between living cells and cytomimetic agents such as giant unilamellar lipid vesicles, proteinosomes, polysaccharidosomes, polymer-based giant vesicles and membrane-less coacervate micro-droplets. We describe three potential modes of chemical communication in consortia of synthetic and living cells based on mechanisms of distributed communication and signal processing, physical embodiment and nested communication, and network-based contact-dependent communication. We survey the potential for applying synthetic cell/living cell communication systems in biomedicine, including the in situ production of therapeutics and development of new bioreactors. Finally, we present a short summary of our findings.

Citing Articles

Responsive DNA artificial cells for contact and behavior regulation of mammalian cells.

Wang M, Nan H, Wang M, Yang S, Liu L, Wang H Nat Commun. 2025; 16(1):2410.

PMID: 40069211 PMC: 11897219. DOI: 10.1038/s41467-025-57770-1.


Coacervation in systems chemistry.

Leon L, Santiago G, Spruijt E Commun Chem. 2024; 7(1):275.

PMID: 39578544 PMC: 11584801. DOI: 10.1038/s42004-024-01358-1.


Chemical Communication between Giant Vesicles and Gated Nanoparticles for Strip-Based Sensing.

Ventura-Cobos J, Climent E, Martinez-Manez R, Llopis-Lorente A Nano Lett. 2024; 24(44):14050-14057.

PMID: 39442006 PMC: 11544697. DOI: 10.1021/acs.nanolett.4c04022.


Spatiotemporal Communication in Artificial Cell Consortia for Dynamic Control of DNA Nanostructures.

Llopis-Lorente A, Shao J, Ventura J, Buddingh B, Martinez-Manez R, van Hest J ACS Cent Sci. 2024; 10(8):1619-1628.

PMID: 39220708 PMC: 11363350. DOI: 10.1021/acscentsci.4c00702.


Spatiotemporal Regulation of Cell Fate in Living Systems Using Photoactivatable Artificial DNA Membraneless Organelles.

Zhang L, Chen M, Wang Z, Zhong M, Chen H, Li T ACS Cent Sci. 2024; 10(6):1201-1210.

PMID: 38947212 PMC: 11212128. DOI: 10.1021/acscentsci.4c00380.


References
1.
Mann S . Systems of creation: the emergence of life from nonliving matter. Acc Chem Res. 2012; 45(12):2131-41. DOI: 10.1021/ar200281t. View

2.
Dzieciol A, Mann S . Designs for life: protocell models in the laboratory. Chem Soc Rev. 2011; 41(1):79-85. DOI: 10.1039/c1cs15211d. View

3.
Szostak J, Bartel D, Luisi P . Synthesizing life. Nature. 2001; 409(6818):387-90. DOI: 10.1038/35053176. View

4.
Mittelbrunn M, Sanchez-Madrid F . Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012; 13(5):328-35. PMC: 3738855. DOI: 10.1038/nrm3335. View

5.
Thingholm B, Schattling P, Zhang Y, Stadler B . Subcompartmentalized Nanoreactors as Artificial Organelle with Intracellular Activity. Small. 2016; 12(13):1806-14. DOI: 10.1002/smll.201502109. View