» Articles » PMID: 36656904

TriTrypDB: An Integrated Functional Genomics Resource for Kinetoplastida

Abstract

Parasitic diseases caused by kinetoplastid parasites are a burden to public health throughout tropical and subtropical regions of the world. TriTrypDB (https://tritrypdb.org) is a free online resource for data mining of genomic and functional data from these kinetoplastid parasites and is part of the VEuPathDB Bioinformatics Resource Center (https://veupathdb.org). As of release 59, TriTrypDB hosts 83 kinetoplastid genomes, nine of which, including Trypanosoma brucei brucei TREU927, Trypanosoma cruzi CL Brener and Leishmania major Friedlin, undergo manual curation by integrating information from scientific publications, high-throughput assays and user submitted comments. TriTrypDB also integrates transcriptomic, proteomic, epigenomic, population-level and isolate data, functional information from genome-wide RNAi knock-down and fluorescent tagging, and results from automated bioinformatics analysis pipelines. TriTrypDB offers a user-friendly web interface embedded with a genome browser, search strategy system and bioinformatics tools to support custom in silico experiments that leverage integrated data. A Galaxy workspace enables users to analyze their private data (e.g., RNA-sequencing, variant calling, etc.) and explore their results privately in the context of publicly available information in the database. The recent addition of an annotation platform based on Apollo enables users to provide both functional and structural changes that will appear as 'community annotations' immediately and, pending curatorial review, will be integrated into the official genome annotation.

Citing Articles

Genomic determinants of antigen expression hierarchy in African trypanosomes.

Keneskhanova Z, McWilliam K, Cosentino R, Barcons-Simon A, Dobrynin A, Smith J Nature. 2025; .

PMID: 40074895 DOI: 10.1038/s41586-025-08720-w.


Detailed characterisation of the trypanosome nuclear pore architecture reveals conserved asymmetrical functional hubs that drive mRNA export.

Gabiatti B, Krenzer J, Braune S, Kruger T, Zoltner M, Kramer S PLoS Biol. 2025; 23(2):e3003024.

PMID: 39899609 PMC: 11825100. DOI: 10.1371/journal.pbio.3003024.


The SET29 and SET7 proteins of Leishmania donovani exercise non-redundant convergent as well as collaborative functions in moderating the parasite's response to oxidative stress.

Sharma V, Pal J, Dashora V, Chattopadhyay S, Kapoor Y, Singha B J Biol Chem. 2025; 301(3):108208.

PMID: 39842664 PMC: 11871502. DOI: 10.1016/j.jbc.2025.108208.


Structural basis of Spliced Leader RNA recognition by the Trypanosoma brucei cap-binding complex.

Bernhard H, Petrzilkova H, Popelarova B, Ziemkiewicz K, Bartosik K, Warminski M Nat Commun. 2025; 16(1):685.

PMID: 39814716 PMC: 11735809. DOI: 10.1038/s41467-024-55373-w.


TransLeish: Identification of membrane transporters essential for survival of intracellular Leishmania parasites in a systematic gene deletion screen.

Albuquerque-Wendt A, McCoy C, Neish R, Dobramysl U, Alagoz C, Beneke T Nat Commun. 2025; 16(1):299.

PMID: 39747086 PMC: 11696137. DOI: 10.1038/s41467-024-55538-7.


References
1.
Kim D, Paggi J, Park C, Bennett C, Salzberg S . Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915. PMC: 7605509. DOI: 10.1038/s41587-019-0201-4. View

2.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View

3.
Uran Landaburu L, Berenstein A, Videla S, Maru P, Shanmugam D, Chernomoretz A . TDR Targets 6: driving drug discovery for human pathogens through intensive chemogenomic data integration. Nucleic Acids Res. 2019; 48(D1):D992-D1005. PMC: 7145610. DOI: 10.1093/nar/gkz999. View

4.
Putri G, Anders S, Pyl P, Pimanda J, Zanini F . Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics. 2022; 38(10):2943-2945. PMC: 9113351. DOI: 10.1093/bioinformatics/btac166. View

5.
Claros M, Vincens P . Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996; 241(3):779-86. DOI: 10.1111/j.1432-1033.1996.00779.x. View