» Articles » PMID: 36513636

Clustering of Single-cell Multi-omics Data with a Multimodal Deep Learning Method

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Dec 13
PMID 36513636
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell multimodal sequencing technologies are developed to simultaneously profile different modalities of data in the same cell. It provides a unique opportunity to jointly analyze multimodal data at the single-cell level for the identification of distinct cell types. A correct clustering result is essential for the downstream complex biological functional studies. However, combining different data sources for clustering analysis of single-cell multimodal data remains a statistical and computational challenge. Here, we develop a novel multimodal deep learning method, scMDC, for single-cell multi-omics data clustering analysis. scMDC is an end-to-end deep model that explicitly characterizes different data sources and jointly learns latent features of deep embedding for clustering analysis. Extensive simulation and real-data experiments reveal that scMDC outperforms existing single-cell single-modal and multimodal clustering methods on different single-cell multimodal datasets. The linear scalability of running time makes scMDC a promising method for analyzing large multimodal datasets.

Citing Articles

MetaQ: fast, scalable and accurate metacell inference via single-cell quantization.

Li Y, Li H, Lin Y, Zhang D, Peng D, Liu X Nat Commun. 2025; 16(1):1205.

PMID: 39885131 PMC: 11782697. DOI: 10.1038/s41467-025-56424-6.


scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis.

Lan W, Ling T, Chen Q, Zheng R, Li M, Pan Y PLoS Comput Biol. 2024; 20(12):e1012679.

PMID: 39693287 PMC: 11654984. DOI: 10.1371/journal.pcbi.1012679.


GSTRPCA: irregular tensor singular value decomposition for single-cell multi-omics data clustering.

Cui L, Guo G, Ng M, Zou Q, Qiu Y Brief Bioinform. 2024; 26(1).

PMID: 39680741 PMC: 11647523. DOI: 10.1093/bib/bbae649.


scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases.

Hu H, Quon G Nat Commun. 2024; 15(1):9932.

PMID: 39548084 PMC: 11568318. DOI: 10.1038/s41467-024-53971-2.


Knowledge-based inductive bias and domain adaptation for cell type annotation.

Tang Z, Chen G, Chen S, He H, You L, Chen C Commun Biol. 2024; 7(1):1440.

PMID: 39501016 PMC: 11538527. DOI: 10.1038/s42003-024-07171-9.


References
1.
Do V, Ringeling F, Canzar S . Linear-time cluster ensembles of large-scale single-cell RNA-seq and multimodal data. Genome Res. 2021; 31(4):677-688. PMC: 8015854. DOI: 10.1101/gr.267906.120. View

2.
Ma S, Zhang B, LaFave L, Earl A, Chiang Z, Hu Y . Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin. Cell. 2020; 183(4):1103-1116.e20. PMC: 7669735. DOI: 10.1016/j.cell.2020.09.056. View

3.
Gavin C, Meinke S, Heldring N, Heck K, Achour A, Iacobaeus E . The Complement System Is Essential for the Phagocytosis of Mesenchymal Stromal Cells by Monocytes. Front Immunol. 2019; 10:2249. PMC: 6763726. DOI: 10.3389/fimmu.2019.02249. View

4.
Jones D, Read K, Oestreich K . Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 T Cell Populations. J Immunol. 2020; 205(7):1721-1730. PMC: 7513451. DOI: 10.4049/jimmunol.2000612. View

5.
Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J . A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. 2018; 9(1):284. PMC: 5773593. DOI: 10.1038/s41467-017-02554-5. View