» Articles » PMID: 38263515

Mosaic Integration and Knowledge Transfer of Single-cell Multimodal Data with MIDAS

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2024 Jan 24
PMID 38263515
Authors
Affiliations
Soon will be listed here.
Abstract

Integrating single-cell datasets produced by multiple omics technologies is essential for defining cellular heterogeneity. Mosaic integration, in which different datasets share only some of the measured modalities, poses major challenges, particularly regarding modality alignment and batch effect removal. Here, we present a deep probabilistic framework for the mosaic integration and knowledge transfer (MIDAS) of single-cell multimodal data. MIDAS simultaneously achieves dimensionality reduction, imputation and batch correction of mosaic data by using self-supervised modality alignment and information-theoretic latent disentanglement. We demonstrate its superiority to 19 other methods and reliability by evaluating its performance in trimodal and mosaic integration tasks. We also constructed a single-cell trimodal atlas of human peripheral blood mononuclear cells and tailored transfer learning and reciprocal reference mapping schemes to enable flexible and accurate knowledge transfer from the atlas to new data. Applications in mosaic integration, pseudotime analysis and cross-tissue knowledge transfer on bone marrow mosaic datasets demonstrate the versatility and superiority of MIDAS. MIDAS is available at https://github.com/labomics/midas .

Citing Articles

Foundation models in bioinformatics.

Guo F, Guan R, Li Y, Liu Q, Wang X, Yang C Natl Sci Rev. 2025; 12(4):nwaf028.

PMID: 40078374 PMC: 11900445. DOI: 10.1093/nsr/nwaf028.


Benchmarking single-cell cross-omics imputation methods for surface protein expression.

Li C, Hong Y, Li B, Zhang X Genome Biol. 2025; 26(1):46.

PMID: 40038818 PMC: 11881419. DOI: 10.1186/s13059-025-03514-9.


Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.

Chang L, Liu J, Zhu J, Guo S, Wang Y, Zhou Z Cancer Biol Med. 2025; 22(1).

PMID: 39749734 PMC: 11795263. DOI: 10.20892/j.issn.2095-3941.2024.0376.


A joint analysis of single cell transcriptomics and proteomics using transformer.

Chen Y, Fan X, Shi C, Shi Z, Wang C NPJ Syst Biol Appl. 2025; 11(1):1.

PMID: 39743530 PMC: 11693752. DOI: 10.1038/s41540-024-00484-9.


Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning.

Cai Z, Apolinario S, Baiao A, Pacini C, Sousa M, Vinga S Nat Commun. 2024; 15(1):10390.

PMID: 39614072 PMC: 11607321. DOI: 10.1038/s41467-024-54771-4.


References
1.
Vandereyken K, Sifrim A, Thienpont B, Voet T . Methods and applications for single-cell and spatial multi-omics. Nat Rev Genet. 2023; 24(8):494-515. PMC: 9979144. DOI: 10.1038/s41576-023-00580-2. View

2.
Mimitou E, Lareau C, Chen K, Zorzetto-Fernandes A, Hao Y, Takeshima Y . Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat Biotechnol. 2021; 39(10):1246-1258. PMC: 8763625. DOI: 10.1038/s41587-021-00927-2. View

3.
Swanson E, Lord C, Reading J, Heubeck A, Genge P, Thomson Z . Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. Elife. 2021; 10. PMC: 8034981. DOI: 10.7554/eLife.63632. View

4.
Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay P, Swerdlow H . Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017; 14(9):865-868. PMC: 5669064. DOI: 10.1038/nmeth.4380. View

5.
Chen S, Lake B, Zhang K . High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat Biotechnol. 2019; 37(12):1452-1457. PMC: 6893138. DOI: 10.1038/s41587-019-0290-0. View