» Articles » PMID: 32818441

Integrative Methods and Practical Challenges for Single-Cell Multi-omics

Overview
Specialty Biochemistry
Date 2020 Aug 21
PMID 32818441
Citations 100
Authors
Affiliations
Soon will be listed here.
Abstract

Fast-developing single-cell multimodal omics (scMulti-omics) technologies enable the measurement of multiple modalities, such as DNA methylation, chromatin accessibility, RNA expression, protein abundance, gene perturbation, and spatial information, from the same cell. scMulti-omics can comprehensively explore and identify cell characteristics, while also presenting challenges to the development of computational methods and tools for integrative analyses. Here, we review these integrative methods and summarize the existing tools for studying a variety of scMulti-omics data. The various functionalities and practical challenges in using the available tools in the public domain are explored through several case studies. Finally, we identify remaining challenges and future trends in scMulti-omics modeling and analyses.

Citing Articles

Benchmarking single-cell cross-omics imputation methods for surface protein expression.

Li C, Hong Y, Li B, Zhang X Genome Biol. 2025; 26(1):46.

PMID: 40038818 PMC: 11881419. DOI: 10.1186/s13059-025-03514-9.


Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions.

Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem R, Adel A Biomedicines. 2025; 13(2).

PMID: 40002898 PMC: 11852909. DOI: 10.3390/biomedicines13020485.


Advances in bioinformatics and multi-omics integration: transforming viral infectious disease research in veterinary medicine.

Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A Virol J. 2025; 22(1):22.

PMID: 39891257 PMC: 11783962. DOI: 10.1186/s12985-025-02640-x.


Leveraging Single-Cell Multi-Omics to Decode Tumor Microenvironment Diversity and Therapeutic Resistance.

Sabit H, Arneth B, Pawlik T, Abdel-Ghany S, Ghazy A, Abdelazeem R Pharmaceuticals (Basel). 2025; 18(1).

PMID: 39861138 PMC: 11768313. DOI: 10.3390/ph18010075.


Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy.

Chadokiya J, Chang K, Sharma S, Hu J, Lill J, Dionne J Front Immunol. 2025; 15():1520860.

PMID: 39850874 PMC: 11753970. DOI: 10.3389/fimmu.2024.1520860.


References
1.
Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy A, Chang H . Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci U S A. 2018; 115(30):7723-7728. PMC: 6065048. DOI: 10.1073/pnas.1805681115. View

2.
Gawad C, Koh W, Quake S . Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016; 17(3):175-88. DOI: 10.1038/nrg.2015.16. View

3.
Li L, Guo F, Gao Y, Ren Y, Yuan P, Yan L . Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol. 2018; 20(7):847-858. DOI: 10.1038/s41556-018-0123-2. View

4.
Zhang L, Lv C, Jin Y, Cheng G, Fu Y, Yuan D . Deep Learning-Based Multi-Omics Data Integration Reveals Two Prognostic Subtypes in High-Risk Neuroblastoma. Front Genet. 2018; 9:477. PMC: 6201709. DOI: 10.3389/fgene.2018.00477. View

5.
Liu J, Lin D, Yardimci G, Noble W . Unsupervised embedding of single-cell Hi-C data. Bioinformatics. 2018; 34(13):i96-i104. PMC: 6022597. DOI: 10.1093/bioinformatics/bty285. View