» Articles » PMID: 36402845

Structure of the Human Heparan Sulfate Polymerase Complex EXT1-EXT2

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Nov 19
PMID 36402845
Authors
Affiliations
Soon will be listed here.
Abstract

Heparan sulfates are complex polysaccharides that mediate the interaction with a broad range of protein ligands at the cell surface. A key step in heparan sulfate biosynthesis is catalyzed by the bi-functional glycosyltransferases EXT1 and EXT2, which generate the glycan backbone consisting of repeating N-acetylglucosamine and glucuronic acid units. The molecular mechanism of heparan sulfate chain polymerization remains, however, unknown. Here, we present the cryo-electron microscopy structure of human EXT1-EXT2, which reveals the formation of a tightly packed hetero-dimeric complex harboring four glycosyltransferase domains. A combination of in vitro and in cellulo mutational studies is used to dissect the functional role of the four catalytic sites. While EXT1 can catalyze both glycosyltransferase reactions, our results indicate that EXT2 might only have N-acetylglucosamine transferase activity. Our findings provide mechanistic insight into heparan sulfate chain elongation as a nonprocessive process and lay the foundation for future studies on EXT1-EXT2 function in health and disease.

Citing Articles

Structural and Functional Analysis of Heparosan Synthase 2 from (PmHS2) to Improve the Synthesis of Heparin.

Stancanelli E, Krahn J, Viverette E, Dutcher R, Pagadala V, Borgnia M ACS Catal. 2025; 14(9):6577-6588.

PMID: 39990868 PMC: 11845225. DOI: 10.1021/acscatal.4c00677.


EXT1 and Its Methylation Involved in the Progression of Uterine Corpus Endometrial Carcinoma Pathogenesis.

Chen H, Han C, Ha C Appl Biochem Biotechnol. 2024; .

PMID: 39673673 DOI: 10.1007/s12010-024-05116-w.


AEG-1 as a Novel Therapeutic Target in Colon Cancer: A Study from Silencing AEG-1 in BALB/c Mice to Large Data Analysis.

Sriramulu S, Malayaperumal S, Banerjee A, Anbalagan M, Kumar M, Radha R Curr Gene Ther. 2024; 24(4):307-320.

PMID: 38783530 DOI: 10.2174/0115665232273077240104045022.


Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies.

Deng J, Li Y, Wang Y, Cao Y, Xin S, Li X Nat Commun. 2024; 15(1):3755.

PMID: 38704385 PMC: 11069525. DOI: 10.1038/s41467-024-48193-5.


Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1.

Mycroft-West C, Abdelkarim S, Duyvesteyn H, Gandhi N, Skidmore M, Owens R Nat Commun. 2024; 15(1):1326.

PMID: 38351061 PMC: 10864358. DOI: 10.1038/s41467-024-45419-4.


References
1.
Schuman B, Evans S, Fyles T . Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. PLoS One. 2013; 8(8):e71077. PMC: 3731257. DOI: 10.1371/journal.pone.0071077. View

2.
Li Z, Fischer M, Satkunarajah M, Zhou D, Withers S, Rini J . Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat Commun. 2017; 8(1):185. PMC: 5543122. DOI: 10.1038/s41467-017-00255-7. View

3.
Hassinen A, Kellokumpu S . Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J Biol Chem. 2014; 289(39):26937-26948. PMC: 4175334. DOI: 10.1074/jbc.M114.595058. View

4.
Povie G, Tran A, Bonnaffe D, Habegger J, Hu Z, Le Narvor C . Repairing the thiol-ene coupling reaction. Angew Chem Int Ed Engl. 2014; 53(15):3894-8. DOI: 10.1002/anie.201309984. View

5.
Goddard T, Huang C, Meng E, Pettersen E, Couch G, Morris J . UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2017; 27(1):14-25. PMC: 5734306. DOI: 10.1002/pro.3235. View