6.
Chan A, Lee W, Spasov K, Cisneros J, Kudalkar S, Petrova Z
. Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography. Proc Natl Acad Sci U S A. 2017; 114(36):9725-9730.
PMC: 5594698.
DOI: 10.1073/pnas.1711463114.
View
7.
Kisseleva T, Bhattacharya S, Braunstein J, Schindler C
. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002; 285(1-2):1-24.
DOI: 10.1016/s0378-1119(02)00398-0.
View
8.
Cutrona K, Newton A, Krimmer S, Tirado-Rives J, Jorgensen W
. Metadynamics as a Postprocessing Method for Virtual Screening with Application to the Pseudokinase Domain of JAK2. J Chem Inf Model. 2020; 60(9):4403-4415.
PMC: 7927942.
DOI: 10.1021/acs.jcim.0c00276.
View
9.
Saharinen P, Silvennoinen O
. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002; 277(49):47954-63.
DOI: 10.1074/jbc.M205156200.
View
10.
Shi L, Zhong Z, Li X, Zhou Y, Pan Z
. Discovery of an Orally Available Janus Kinase 3 Selective Covalent Inhibitor. J Med Chem. 2019; 62(2):1054-1066.
DOI: 10.1021/acs.jmedchem.8b01823.
View
11.
Liosi M, Ippolito J, Henry S, Krimmer S, Newton A, Cutrona K
. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. J Med Chem. 2022; 65(12):8380-8400.
PMC: 9939005.
DOI: 10.1021/acs.jmedchem.2c00283.
View
12.
Birkholz A, Kopecky D, Volak L, Bartberger M, Chen Y, Tegley C
. Systematic Study of the Glutathione Reactivity of -Phenylacrylamides: 2. Effects of Acrylamide Substitution. J Med Chem. 2020; 63(20):11602-11614.
DOI: 10.1021/acs.jmedchem.0c00749.
View
13.
Kim H, Hwang Y, Kim M, Park S
. Recent advances in the development of covalent inhibitors. RSC Med Chem. 2021; 12(7):1037-1045.
PMC: 8292994.
DOI: 10.1039/d1md00068c.
View
14.
Liu M, Xiao C, Sun M, Tan M, Hu L, Yu Q
. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med. 2019; 23(6):4301-4312.
PMC: 6533482.
DOI: 10.1111/jcmm.14322.
View
15.
Alexander M, Luo Y, Raimondi G, OShea J, Gadina M
. Jakinibs of All Trades: Inhibiting Cytokine Signaling in Immune-Mediated Pathologies. Pharmaceuticals (Basel). 2022; 15(1).
PMC: 8779366.
DOI: 10.3390/ph15010048.
View
16.
He L, Pei H, Lan T, Tang M, Zhang C, Chen L
. Design and Synthesis of a Highly Selective JAK3 Inhibitor for the Treatment of Rheumatoid Arthritis. Arch Pharm (Weinheim). 2017; 350(11).
DOI: 10.1002/ardp.201700194.
View
17.
McAulay K, Hoyt E, Thomas M, Schimpl M, Bodnarchuk M, Lewis H
. Alkynyl Benzoxazines and Dihydroquinazolines as Cysteine Targeting Covalent Warheads and Their Application in Identification of Selective Irreversible Kinase Inhibitors. J Am Chem Soc. 2020; 142(23):10358-10372.
DOI: 10.1021/jacs.9b13391.
View
18.
Chaikuad A, Koch P, Laufer S, Knapp S
. The Cysteinome of Protein Kinases as a Target in Drug Development. Angew Chem Int Ed Engl. 2017; 57(16):4372-4385.
DOI: 10.1002/anie.201707875.
View
19.
Baillie T
. Targeted Covalent Inhibitors for Drug Design. Angew Chem Int Ed Engl. 2016; 55(43):13408-13421.
DOI: 10.1002/anie.201601091.
View
20.
Su W, Chen Z, Liu M, He R, Liu C, Li R
. Design, synthesis and structure-activity relationship studies of pyrido[2,3-d]pyrimidin-7-ones as potent Janus Kinase 3 (JAK3) covalent inhibitors. Bioorg Med Chem Lett. 2022; 64:128680.
DOI: 10.1016/j.bmcl.2022.128680.
View