» Articles » PMID: 36344570

Sharp-wave Ripple Doublets Induce Complex Dendritic Spikes in Parvalbumin Interneurons in Vivo

Abstract

Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording. The regenerative calcium spike started at variable, NMDA-AMPA-dependent, hot spots and propagated in both direction with a high amplitude beyond a critical distance threshold (~150 µm) involving voltage-gated calcium channels. A supralinear dendritic summation emerged during SPW-R doublets when two successive SPW-R events coincide within a short temporal window (~150 ms), e.g., during more complex association tasks, and generated large dSpikes with an about 2.5-3-fold amplitude increase which propagated down to the soma. Our results suggest that these doublet-associated dSpikes can work as a dendritic-level temporal and spatial coincidence detector during SPW-R-related network computation in awake mice.

Citing Articles

Hippocampal recording with a soft microelectrode array in a cranial window imaging scheme: a validation study.

Juhasz G, Madarasz M, Szmola B, Fedor F, Balogh-Lantos Z, Szabo A Sci Rep. 2024; 14(1):24585.

PMID: 39427030 PMC: 11490575. DOI: 10.1038/s41598-024-75170-1.


A dendritic substrate for temporal diversity of cortical inhibition.

Morabito A, Zerlau Y, Dhanasobhon D, Berthaux E, Tzilivaki A, Moneron G bioRxiv. 2024; .

PMID: 39026855 PMC: 11257522. DOI: 10.1101/2024.07.09.602783.


Inter and intralaminar excitation of parvalbumin interneurons in mouse barrel cortex.

Scheuer K, Jansson A, Zhao X, Jackson M PLoS One. 2024; 19(6):e0289901.

PMID: 38870124 PMC: 11175493. DOI: 10.1371/journal.pone.0289901.


Physiological features of parvalbumin-expressing GABAergic interneurons contributing to high-frequency oscillations in the cerebral cortex.

Milicevic K, Barbeau B, Lovic D, Patel A, Ivanova V, Antic S Curr Res Neurobiol. 2024; 6:100121.

PMID: 38616956 PMC: 11015061. DOI: 10.1016/j.crneur.2023.100121.


Multiphoton imaging of hippocampal neural circuits: techniques and biological insights into region-, cell-type-, and pathway-specific functions.

Mizuta K, Sato M Neurophotonics. 2024; 11(3):033406.

PMID: 38464393 PMC: 10923542. DOI: 10.1117/1.NPh.11.3.033406.


References
1.
Rozsa B, Zelles T, Vizi E, Lendvai B . Distance-dependent scaling of calcium transients evoked by backpropagating spikes and synaptic activity in dendrites of hippocampal interneurons. J Neurosci. 2004; 24(3):661-70. PMC: 6729270. DOI: 10.1523/JNEUROSCI.3906-03.2004. View

2.
Meyer A, Katona I, Blatow M, Rozov A, Monyer H . In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci. 2002; 22(16):7055-64. PMC: 6757887. DOI: 20026742. View

3.
Lamsa K, Heeroma J, Somogyi P, Rusakov D, Kullmann D . Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science. 2007; 315(5816):1262-6. PMC: 3369266. DOI: 10.1126/science.1137450. View

4.
Chiovini B, Turi G, Katona G, Kaszas A, Erdelyi F, Szabo G . Enhanced dendritic action potential backpropagation in parvalbumin-positive basket cells during sharp wave activity. Neurochem Res. 2010; 35(12):2086-95. DOI: 10.1007/s11064-010-0290-4. View

5.
Bagnall M, Hull C, Bushong E, Ellisman M, Scanziani M . Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron. 2011; 71(1):180-94. PMC: 3271052. DOI: 10.1016/j.neuron.2011.05.032. View