» Articles » PMID: 22231641

Fast Two-photon in Vivo Imaging with Three-dimensional Random-access Scanning in Large Tissue Volumes

Overview
Journal Nat Methods
Date 2012 Jan 11
PMID 22231641
Citations 175
Authors
Affiliations
Soon will be listed here.
Abstract

The understanding of brain computations requires methods that read out neural activity on different spatial and temporal scales. Following signal propagation and integration across a neuron and recording the concerted activity of hundreds of neurons pose distinct challenges, and the design of imaging systems has been mostly focused on tackling one of the two operations. We developed a high-resolution, acousto-optic two-photon microscope with continuous three-dimensional (3D) trajectory and random-access scanning modes that reaches near-cubic-millimeter scan range and can be adapted to imaging different spatial scales. We performed 3D calcium imaging of action potential backpropagation and dendritic spike forward propagation at sub-millisecond temporal resolution in mouse brain slices. We also performed volumetric random-access scanning calcium imaging of spontaneous and visual stimulation-evoked activity in hundreds of neurons of the mouse visual cortex in vivo. These experiments demonstrate the subcellular and network-scale imaging capabilities of our system.

Citing Articles

Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.

Nguyen T, Shalaby R, Lee E, Kim S, Ro Kim Y, Kim S Neurophotonics. 2025; 12(Suppl 1):S14608.

PMID: 40017464 PMC: 11867703. DOI: 10.1117/1.NPh.12.S1.S14608.


In vivo three-photon fluorescence imaging of mouse brain vasculature labeled by Evans blue excited at the NIR-III window.

Tong S, Liu H, Huang J, Zhong J, Yan J, Wang H Biomed Opt Express. 2025; 16(1):257-266.

PMID: 39816156 PMC: 11729278. DOI: 10.1364/BOE.545987.


Optical sectioning methods in three-dimensional bioimaging.

Zhang J, Qiao W, Jin R, Li H, Gong H, Chen S Light Sci Appl. 2024; 14(1):11.

PMID: 39741128 PMC: 11688461. DOI: 10.1038/s41377-024-01677-x.


Synaptic basis of feature selectivity in hippocampal neurons.

Gonzalez K, Negrean A, Liao Z, Terada S, Zhang G, Lee S Nature. 2024; 637(8048):1152-1160.

PMID: 39695232 DOI: 10.1038/s41586-024-08325-9.


Moculus: an immersive virtual reality system for mice incorporating stereo vision.

Judak L, Dobos G, Ocsai K, Bathory E, Szebik H, Tarjan B Nat Methods. 2024; 22(2):386-398.

PMID: 39668210 PMC: 11810792. DOI: 10.1038/s41592-024-02554-6.


References
1.
Cheng A, Goncalves J, Golshani P, Arisaka K, Portera-Cailliau C . Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat Methods. 2011; 8(2):139-42. PMC: 3076599. DOI: 10.1038/nmeth.1552. View

2.
Grewe B, Helmchen F . Optical probing of neuronal ensemble activity. Curr Opin Neurobiol. 2009; 19(5):520-9. DOI: 10.1016/j.conb.2009.09.003. View

3.
Otsu Y, Bormuth V, Wong J, Mathieu B, Dugue G, Feltz A . Optical monitoring of neuronal activity at high frame rate with a digital random-access multiphoton (RAMP) microscope. J Neurosci Methods. 2008; 173(2):259-70. DOI: 10.1016/j.jneumeth.2008.06.015. View

4.
Jia H, Rochefort N, Chen X, Konnerth A . Dendritic organization of sensory input to cortical neurons in vivo. Nature. 2010; 464(7293):1307-12. DOI: 10.1038/nature08947. View

5.
Durst M, Zhu G, Xu C . Simultaneous spatial and temporal focusing for axial scanning. Opt Express. 2009; 14(25):12243-54. DOI: 10.1364/oe.14.012243. View