» Articles » PMID: 36288262

A Bifunctional Chemical Reporter for in Situ Analysis of Cell Envelope Glycan Recycling in Mycobacteria

Abstract

In mycobacteria, the glucose-based disaccharide trehalose cycles between the cytoplasm, where it is a stress protectant and carbon source, and the cell envelope, where it is released as a byproduct of outer mycomembrane glycan biosynthesis and turnover. Trehalose recycling via the LpqY-SugABC transporter promotes virulence, antibiotic recalcitrance, and efficient adaptation to nutrient deprivation. The source(s) of trehalose and the regulation of recycling under these and other stressors are unclear. A key technical gap in addressing these questions has been the inability to trace trehalose recycling in situ, directly from its site of liberation from the cell envelope. Here we describe a bifunctional chemical reporter that simultaneously marks mycomembrane biosynthesis and subsequent trehalose recycling with alkyne and azide groups. Using this probe, we discovered that the recycling efficiency for trehalose increases upon carbon starvation, concomitant with an increase in LpqY-SugABC expression. The ability of the bifunctional reporter to probe multiple, linked steps provides a more nuanced understanding of mycobacterial cell envelope metabolism and its plasticity under stress.

Citing Articles

Fluorinated trehalose analogues for cell surface engineering and imaging of .

Guy C, Gott J, Ramirez-Cardenas J, de Wolf C, Furze C, West G Chem Sci. 2024; .

PMID: 39144457 PMC: 11317875. DOI: 10.1039/d4sc00721b.


Fluorogenic Probes of the Mycobacterial Membrane as Reporters of Antibiotic Action.

Wuo M, Dulberger C, Warner T, Brown R, Sturm A, Ultee E J Am Chem Soc. 2024; 146(26):17669-17678.

PMID: 38905328 PMC: 11646346. DOI: 10.1021/jacs.4c00617.


Chemical biology tools to probe bacterial glycans.

Calles-Garcia D, Dube D Curr Opin Chem Biol. 2024; 80:102453.

PMID: 38582017 PMC: 11164641. DOI: 10.1016/j.cbpa.2024.102453.


Monitoring host-pathogen interactions using chemical proteomics.

Weigert Munoz A, Zhao W, Sieber S RSC Chem Biol. 2024; 5(2):73-89.

PMID: 38333198 PMC: 10849124. DOI: 10.1039/d3cb00135k.


Chemical approaches to unraveling the biology of mycobacteria.

Finin P, Khan R, Oh S, Boshoff H, Barry 3rd C Cell Chem Biol. 2023; 30(5):420-435.

PMID: 37207631 PMC: 10201459. DOI: 10.1016/j.chembiol.2023.04.014.


References
1.
Lee J, Lee S, Song N, Nathan T, Swarts B, Eum S . Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat Commun. 2019; 10(1):2928. PMC: 6606615. DOI: 10.1038/s41467-019-10975-7. View

2.
Foley H, Stewart J, Kavunja H, Rundell S, Swarts B . Bioorthogonal Chemical Reporters for Selective In Situ Probing of Mycomembrane Components in Mycobacteria. Angew Chem Int Ed Engl. 2016; 55(6):2053-7. DOI: 10.1002/anie.201509216. View

3.
Betts J, Lukey P, Robb L, McAdam R, Duncan K . Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002; 43(3):717-31. DOI: 10.1046/j.1365-2958.2002.02779.x. View

4.
Backus K, Boshoff H, Barry C, Boutureira O, Patel M, DHooge F . Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis. Nat Chem Biol. 2011; 7(4):228-35. PMC: 3157484. DOI: 10.1038/nchembio.539. View

5.
Galagan J, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L . The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. 2013; 499(7457):178-83. PMC: 4087036. DOI: 10.1038/nature12337. View