» Articles » PMID: 25725012

Illumination of Growth, Division and Secretion by Metabolic Labeling of the Bacterial Cell Surface

Overview
Specialty Microbiology
Date 2015 Mar 1
PMID 25725012
Citations 60
Authors
Affiliations
Soon will be listed here.
Abstract

The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.

Citing Articles

To click or not to click for short pulse-labeling of the bacterial cell wall.

Baudoin M, Chouquet A, Nguyen M, Zapun A, Peres B, Morlot C RSC Adv. 2024; 14(45):33133-33142.

PMID: 39434986 PMC: 11492190. DOI: 10.1039/d4ra04945d.


Enhancing the Anticancer Activity of Attenuated by Cell Wall Functionalization with "Clickable" Doxorubicin.

Lepori I, Roncetti M, Vitiello M, Barresi E, De Paolo R, Tentori P ACS Chem Biol. 2024; 19(10):2131-2140.

PMID: 39317359 PMC: 11494506. DOI: 10.1021/acschembio.4c00250.


Integrated identification of growth pattern and taxon of bacterium in gut microbiota via confocal fluorescence imaging-oriented single-cell sequencing.

Gao J, Sun D, Li B, Yang C, Wang W mLife. 2024; 1(3):350-358.

PMID: 38818223 PMC: 10989894. DOI: 10.1002/mlf2.12041.


Monitoring host-pathogen interactions using chemical proteomics.

Weigert Munoz A, Zhao W, Sieber S RSC Chem Biol. 2024; 5(2):73-89.

PMID: 38333198 PMC: 10849124. DOI: 10.1039/d3cb00135k.


The role of naturally acquired intracellular Pseudomonas aeruginosa in the development of Acanthamoeba keratitis in an animal model.

Rayamajhee B, Willcox M, Henriquez F, Vijay A, Petsoglou C, Shankar Shrestha G PLoS Negl Trop Dis. 2024; 18(1):e0011878.

PMID: 38166139 PMC: 10795995. DOI: 10.1371/journal.pntd.0011878.


References
1.
Manina G, McKinney J . A single-cell perspective on non-growing but metabolically active (NGMA) bacteria. Curr Top Microbiol Immunol. 2013; 374:135-61. DOI: 10.1007/82_2013_333. View

2.
Nelson J, Chamessian A, McEnaney P, Murelli R, Kazmierczak B, Kazmiercak B . A biosynthetic strategy for re-engineering the Staphylococcus aureus cell wall with non-native small molecules. ACS Chem Biol. 2010; 5(12):1147-55. PMC: 3003768. DOI: 10.1021/cb100195d. View

3.
Birdsell D, Cota-Robles E . Production and ultrastructure of lysozyme and ethylenediaminetetraacetate-lysozyme spheroplasts of Escherichia coli. J Bacteriol. 1967; 93(1):427-37. PMC: 315014. DOI: 10.1128/jb.93.1.427-437.1967. View

4.
Schindler M, Osborn M, Koppel D . Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature. 1980; 285(5762):261-3. DOI: 10.1038/285261a0. View

5.
Justice S, Hunstad D, Cegelski L, Hultgren S . Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol. 2007; 6(2):162-8. DOI: 10.1038/nrmicro1820. View