» Articles » PMID: 36269772

Bayesian Parameter Estimation for Dynamical Models in Systems Biology

Overview
Specialty Biology
Date 2022 Oct 21
PMID 36269772
Authors
Affiliations
Soon will be listed here.
Abstract

Dynamical systems modeling, particularly via systems of ordinary differential equations, has been used to effectively capture the temporal behavior of different biochemical components in signal transduction networks. Despite the recent advances in experimental measurements, including sensor development and '-omics' studies that have helped populate protein-protein interaction networks in great detail, modeling in systems biology lacks systematic methods to estimate kinetic parameters and quantify associated uncertainties. This is because of multiple reasons, including sparse and noisy experimental measurements, lack of detailed molecular mechanisms underlying the reactions, and missing biochemical interactions. Additionally, the inherent nonlinearities with respect to the states and parameters associated with the system of differential equations further compound the challenges of parameter estimation. In this study, we propose a comprehensive framework for Bayesian parameter estimation and complete quantification of the effects of uncertainties in the data and models. We apply these methods to a series of signaling models of increasing mathematical complexity. Systematic analysis of these dynamical systems showed that parameter estimation depends on data sparsity, noise level, and model structure, including the existence of multiple steady states. These results highlight how focused uncertainty quantification can enrich systems biology modeling and enable additional quantitative analyses for parameter estimation.

Citing Articles

Challenges and opportunities in uncertainty quantification for healthcare and biological systems.

Kimpton L, Paun L, Colebank M, Volodina V Philos Trans A Math Phys Eng Sci. 2025; 383(2292):20240232.

PMID: 40078151 PMC: 11904623. DOI: 10.1098/rsta.2024.0232.


A bayesian approach for parameterizing and predicting plasmid conjugation dynamics.

Kumsuwan S, Jaichuen C, Jatura C, Subsoontorn P Sci Rep. 2025; 15(1):7396.

PMID: 40032848 PMC: 11876642. DOI: 10.1038/s41598-024-82799-5.


Robust parameter estimation and identifiability analysis with hybrid neural ordinary differential equations in computational biology.

Giampiccolo S, Reali F, Fochesato A, Iacca G, Marchetti L NPJ Syst Biol Appl. 2024; 10(1):139.

PMID: 39609454 PMC: 11604934. DOI: 10.1038/s41540-024-00460-3.


Towards verifiable cancer digital twins: tissue level modeling protocol for precision medicine.

Kemkar S, Tao M, Ghosh A, Stamatakos G, Graf N, Poorey K Front Physiol. 2024; 15:1473125.

PMID: 39507514 PMC: 11537925. DOI: 10.3389/fphys.2024.1473125.


Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop.

Qiao L, Getz M, Gross B, Tenner B, Zhang J, Rangamani P PLoS Comput Biol. 2024; 20(10):e1012564.

PMID: 39480900 PMC: 11556706. DOI: 10.1371/journal.pcbi.1012564.


References
1.
Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp J, Blom J . Systems biology: parameter estimation for biochemical models. FEBS J. 2009; 276(4):886-902. DOI: 10.1111/j.1742-4658.2008.06844.x. View

2.
Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J . Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007; 3(10):1871-78. PMC: 2000971. DOI: 10.1371/journal.pcbi.0030189. View

3.
Bianconi F, Antonini C, Tomassoni L, Valigi P . Application of conditional robust calibration to ordinary differential equations models in computational systems biology: a comparison of two sampling strategies. IET Syst Biol. 2020; 14(3):107-119. PMC: 8687221. DOI: 10.1049/iet-syb.2018.5091. View

4.
Liepe J, Kirk P, Filippi S, Toni T, Barnes C, Stumpf M . A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation. Nat Protoc. 2014; 9(2):439-56. PMC: 5081097. DOI: 10.1038/nprot.2014.025. View

5.
Rangamani P, Iyengar R . Modelling cellular signalling systems. Essays Biochem. 2008; 45:83-94. PMC: 3270941. DOI: 10.1042/BSE0450083. View