» Articles » PMID: 36171294

An LKB1-mitochondria Axis Controls T17 Effector Function

Abstract

CD4 T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes. Mitochondrial membrane dynamics sustains mitochondrial processes, including respiration and tricarboxylic acid (TCA) cycle metabolism, but whether mitochondrial membrane remodelling orchestrates CD4 T cell differentiation remains unclear. Here we show that unlike other CD4 T cell subsets, T helper 17 (T17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology, revealed that T17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in T17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in T17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of T17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in T17 cells.

Citing Articles

Microbiota governs host chenodeoxycholic acid glucuronidation to ameliorate bile acid disorder induced diarrhea.

Lin Z, Feng Y, Wang J, Men Z, Ma X Microbiome. 2025; 13(1):36.

PMID: 39905483 PMC: 11792533. DOI: 10.1186/s40168-024-02011-8.


T cell metabolism in kidney immune homeostasis.

Liu Z, Dai B, Bao J, Pan Y Front Immunol. 2024; 15:1498808.

PMID: 39737193 PMC: 11684269. DOI: 10.3389/fimmu.2024.1498808.


Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance.

Pan X, Zhao Y, Li Y, Chen J, Zhang W, Yang L Nat Commun. 2024; 15(1):10681.

PMID: 39672898 PMC: 11645412. DOI: 10.1038/s41467-024-54720-1.


Targeting mitochondria: restoring the antitumor efficacy of exhausted T cells.

Yang M, Zhang S, Sun L, Huang L, Yu J, Zhang J Mol Cancer. 2024; 23(1):260.

PMID: 39563438 PMC: 11575104. DOI: 10.1186/s12943-024-02175-9.


Cellular ATP demand creates metabolically distinct subpopulations of mitochondria.

Ryu K, Fung T, Baker D, Saoi M, Park J, Febres-Aldana C Nature. 2024; 635(8039):746-754.

PMID: 39506109 PMC: 11869630. DOI: 10.1038/s41586-024-08146-w.


References
1.
Intlekofer A, Dematteo R, Venneti S, Finley L, Lu C, Judkins A . Hypoxia Induces Production of L-2-Hydroxyglutarate. Cell Metab. 2015; 22(2):304-11. PMC: 4527873. DOI: 10.1016/j.cmet.2015.06.023. View

2.
Herkenne S, Ek O, Zamberlan M, Pellattiero A, Chergova M, Chivite I . Developmental and Tumor Angiogenesis Requires the Mitochondria-Shaping Protein Opa1. Cell Metab. 2020; 31(5):987-1003.e8. DOI: 10.1016/j.cmet.2020.04.007. View

3.
Martinez-Reyes I, Chandel N . Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020; 11(1):102. PMC: 6941980. DOI: 10.1038/s41467-019-13668-3. View

4.
Youle R, van der Bliek A . Mitochondrial fission, fusion, and stress. Science. 2012; 337(6098):1062-5. PMC: 4762028. DOI: 10.1126/science.1219855. View

5.
Lun A, Smyth G . csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 2015; 44(5):e45. PMC: 4797262. DOI: 10.1093/nar/gkv1191. View