» Articles » PMID: 36097056

The Choanoflagellate Pore-forming Lectin SaroL-1 Punches Holes in Cancer Cells by Targeting the Tumor-related Glycosphingolipid Gb3

Overview
Journal Commun Biol
Specialty Biology
Date 2022 Sep 12
PMID 36097056
Authors
Affiliations
Soon will be listed here.
Abstract

Choanoflagellates are primitive protozoa used as models for animal evolution. They express a large variety of multi-domain proteins contributing to adhesion and cell communication, thereby providing a rich repertoire of molecules for biotechnology. Adhesion often involves proteins adopting a β-trefoil fold with carbohydrate-binding properties therefore classified as lectins. Sequence database screening with a dedicated method resulted in TrefLec, a database of 44714 β-trefoil candidate lectins across 4497 species. TrefLec was searched for original domain combinations, which led to single out SaroL-1 in the choanoflagellate Salpingoeca rosetta, that contains both β-trefoil and aerolysin-like pore-forming domains. Recombinant SaroL-1 is shown to bind galactose and derivatives, with a stronger affinity for cancer-related α-galactosylated epitopes such as the glycosphingolipid Gb3, when embedded in giant unilamellar vesicles or cell membranes. Crystal structures of complexes with Gb3 trisaccharide and GalNAc provided the basis for building a model of the oligomeric pore. Finally, recognition of the αGal epitope on glycolipids required for hemolysis of rabbit erythrocytes suggests that toxicity on cancer cells is achieved through carbohydrate-dependent pore-formation.

Citing Articles

Tandem-repeat lectins: structural and functional insights.

Olvera-Lucio F, Riveros-Rosas H, Quintero-Martinez A, Hernandez-Santoyo A Glycobiology. 2024; 34(7).

PMID: 38857376 PMC: 11186620. DOI: 10.1093/glycob/cwae041.


Elucidating the glycan-binding specificity and structure of agglutinin, a new R-type lectin.

Lundstrom J, Gillon E, Chazalet V, Kerekes N, Di Maio A, Feizi T Beilstein J Org Chem. 2024; 20:306-320.

PMID: 38410776 PMC: 10896221. DOI: 10.3762/bjoc.20.31.


Taxonomic Distribution and Molecular Evolution of Mytilectins.

Gerdol M, Nerelli D, Martelossi N, Ogawa Y, Fujii Y, Pallavicini A Mar Drugs. 2023; 21(12).

PMID: 38132935 PMC: 10744619. DOI: 10.3390/md21120614.


HumanLectome, an update of UniLectin for the annotation and prediction of human lectins.

Schnider B, MRad Y, El Ahmadie J, de Brevern A, Imberty A, Lisacek F Nucleic Acids Res. 2023; 52(D1):D1683-D1693.

PMID: 37889052 PMC: 10767822. DOI: 10.1093/nar/gkad905.


BiotechLec: an interactive guide of commercial lectins for glycobiology and biomedical research applications.

Schnider B, Escudero F, Imberty A, Lisacek F Glycobiology. 2023; 33(9):684-686.

PMID: 37083961 PMC: 10627245. DOI: 10.1093/glycob/cwad034.


References
1.
Szczesny P, Iacovache I, Muszewska A, Ginalski K, van der Goot F, Grynberg M . Extending the aerolysin family: from bacteria to vertebrates. PLoS One. 2011; 6(6):e20349. PMC: 3110756. DOI: 10.1371/journal.pone.0020349. View

2.
Li Y, Li Y, Mengist H, Shi C, Zhang C, Wang B . Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Toxins (Basel). 2021; 13(2). PMC: 7914777. DOI: 10.3390/toxins13020128. View

3.
Cirauqui N, Abriata L, van der Goot F, Dal Peraro M . Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. Sci Rep. 2017; 7(1):13932. PMC: 5654971. DOI: 10.1038/s41598-017-13714-4. View

4.
Pannu N, Waterreus W, Skubak P, Sikharulidze I, Abrahams J, de Graaff R . Recent advances in the CRANK software suite for experimental phasing. Acta Crystallogr D Biol Crystallogr. 2011; 67(Pt 4):331-7. PMC: 3069748. DOI: 10.1107/S0907444910052224. View

5.
Xiang Y, Yan C, Guo X, Zhou K, Li S, Gao Q . Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection. Proc Natl Acad Sci U S A. 2014; 111(18):6702-7. PMC: 4020095. DOI: 10.1073/pnas.1321317111. View