» Articles » PMID: 33572271

Structural Basis of the Pore-Forming Toxin/Membrane Interaction

Overview
Journal Toxins (Basel)
Publisher MDPI
Specialty Toxicology
Date 2021 Feb 12
PMID 33572271
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

With the rapid growth of antibiotic-resistant bacteria, it is urgent to develop alternative therapeutic strategies. Pore-forming toxins (PFTs) belong to the largest family of virulence factors of many pathogenic bacteria and constitute the most characterized classes of pore-forming proteins (PFPs). Recent studies revealed the structural basis of several PFTs, both as soluble monomers, and transmembrane oligomers. Upon interacting with host cells, the soluble monomer of bacterial PFTs assembles into transmembrane oligomeric complexes that insert into membranes and affect target cell-membrane permeability, leading to diverse cellular responses and outcomes. Herein we have reviewed the structural basis of pore formation and interaction of PFTs with the host cell membrane, which could add valuable contributions in comprehensive understanding of PFTs and searching for novel therapeutic strategies targeting PFTs and interaction with host receptors in the fight of bacterial antibiotic-resistance.

Citing Articles

Bioactive Potential of Some Strains from Macapá, Amazon, Brazil, Against the Housefly (Diptera: Muscidae) Under Laboratory Conditions.

Nascimento T, Paes M, Valicente F, de Carvalho Queiroz M Insects. 2025; 16(1).

PMID: 39859608 PMC: 11766272. DOI: 10.3390/insects16010027.


Circumventing the Impossible: Cell-Free Synthesis of Protein Toxins for Medical and Diagnostic Applications.

Woelbern A, Ramm F Int J Mol Sci. 2025; 25(24.

PMID: 39769056 PMC: 11675919. DOI: 10.3390/ijms252413293.


The Mycotoxins T-2 and Deoxynivalenol Facilitate the Translocation of across Porcine Ileal Organoid Monolayers.

Guan X, Martinez A, Fernandez M, Molist F, Wells J, Santos R Toxins (Basel). 2024; 16(9).

PMID: 39330840 PMC: 11436090. DOI: 10.3390/toxins16090382.


An Insider's Perspective about the Pathogenic Relevance of Gut Bacterial Transportomes.

Zafar H, Saier Jr M Microb Physiol. 2024; 34(1):133-141.

PMID: 38636461 PMC: 11283328. DOI: 10.1159/000538779.


Visible Light Control over the Cytolytic Activity of a Toxic Pore-Forming Protein.

Volaric J, van der Heide N, Mutter N, Samplonius D, Helfrich W, Maglia G ACS Chem Biol. 2024; 19(2):451-461.

PMID: 38318850 PMC: 10877574. DOI: 10.1021/acschembio.3c00640.


References
1.
Iacovache I, De Carlo S, Cirauqui N, Dal Peraro M, van der Goot F, Zuber B . Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat Commun. 2016; 7:12062. PMC: 4947156. DOI: 10.1038/ncomms12062. View

2.
Fahie M, Romano F, Chisholm C, Heuck A, Zbinden M, Chen M . A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A. J Biol Chem. 2013; 288(43):31042-51. PMC: 3829417. DOI: 10.1074/jbc.M113.475350. View

3.
Hunt S, Green J, Artymiuk P . Hemolysin E (HlyE, ClyA, SheA) and related toxins. Adv Exp Med Biol. 2010; 677:116-26. DOI: 10.1007/978-1-4419-6327-7_10. View

4.
Pulagam L, Steinhoff H . Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling. J Mol Biol. 2013; 425(10):1782-94. DOI: 10.1016/j.jmb.2013.01.037. View

5.
van Pee K, Neuhaus A, DImprima E, Mills D, Kuhlbrandt W, Yildiz O . CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife. 2017; 6. PMC: 5437283. DOI: 10.7554/eLife.23644. View