» Articles » PMID: 35995766

Whole Genome Association Study of the Plasma Metabolome Identifies Metabolites Linked to Cardiometabolic Disease in Black Individuals

Abstract

Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.

Citing Articles

Merging metabolomics and genomics provides a catalog of genetic factors that influence molecular phenotypes in pigs linking relevant metabolic pathways.

Bovo S, Ribani A, Fanelli F, Galimberti G, Martelli P, Trevisi P Genet Sel Evol. 2025; 57(1):11.

PMID: 40050712 PMC: 11887101. DOI: 10.1186/s12711-025-00960-8.


Quantitative trait loci mapping of circulating metabolites in cerebrospinal fluid to uncover biological mechanisms involved in brain-related phenotypes.

Reus L, Boltz T, Francia M, Bot M, Ramesh N, Koromina M Mol Psychiatry. 2025; .

PMID: 40021830 DOI: 10.1038/s41380-025-02934-0.


Unsupervised Learning-Derived Complex Metabolic Signatures Refine Cardiometabolic Risk.

Zhou Y, Xiang B, Yang X, Ren Y, Gu X, Zhou X JACC Adv. 2025; 4(3):101620.

PMID: 39983615 PMC: 11891690. DOI: 10.1016/j.jacadv.2025.101620.


Multi-ancestry genome-wide association analyses: a comparison of meta- and mega-analyses in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study.

Kuang A, Hivert M, Hayes M, Lowe Jr W, Scholtens D BMC Genomics. 2025; 26(1):65.

PMID: 39849370 PMC: 11755808. DOI: 10.1186/s12864-025-11229-1.


TEMR: Trans-ethnic mendelian randomization method using large-scale GWAS summary datasets.

Hou L, Wu S, Yuan Z, Xue F, Li H Am J Hum Genet. 2024; 112(1):28-43.

PMID: 39689714 PMC: 11739928. DOI: 10.1016/j.ajhg.2024.11.006.


References
1.
Burkhardt R, Kirsten H, Beutner F, Holdt L, Gross A, Teren A . Integration of Genome-Wide SNP Data and Gene-Expression Profiles Reveals Six Novel Loci and Regulatory Mechanisms for Amino Acids and Acylcarnitines in Whole Blood. PLoS Genet. 2015; 11(9):e1005510. PMC: 4581711. DOI: 10.1371/journal.pgen.1005510. View

2.
Moore K, Freeman M . Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006; 26(8):1702-11. DOI: 10.1161/01.ATV.0000229218.97976.43. View

3.
Hicks A, Pramstaller P, Johansson A, Vitart V, Rudan I, Ugocsai P . Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009; 5(10):e1000672. PMC: 2745562. DOI: 10.1371/journal.pgen.1000672. View

4.
Raffler J, Romisch-Margl W, Petersen A, Pagel P, Blochl F, Hengstenberg C . Identification and MS-assisted interpretation of genetically influenced NMR signals in human plasma. Genome Med. 2013; 5(2):13. PMC: 3706909. DOI: 10.1186/gm417. View

5.
Menni C, Fauman E, Erte I, Perry J, Kastenmuller G, Shin S . Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes. 2013; 62(12):4270-6. PMC: 3837024. DOI: 10.2337/db13-0570. View