» Articles » PMID: 35822503

Antibody Variable Region Engineering for Improving Cancer Immunotherapy

Overview
Publisher Wiley
Specialty Oncology
Date 2022 Jul 13
PMID 35822503
Authors
Affiliations
Soon will be listed here.
Abstract

The efficacy and specificity of conventional monoclonal antibody (mAb) drugs in the clinic require further improvement. Currently, the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention. Variable region-retaining antibody fragments, such as antigen-binding fragment (Fab), single-chain variable fragment (scFv), bispecific antibody, and bi/trispecific cell engagers, are engineered with humanization, multivalent antibody construction, affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency, efficacy and specificity. In this review, we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.

Citing Articles

Nanobody-enhanced chimeric antigen receptor T-cell therapy: overcoming barriers in solid tumors with VHH and VNAR-based constructs.

Guo S, Xi X Biomark Res. 2025; 13(1):41.

PMID: 40069884 PMC: 11899093. DOI: 10.1186/s40364-025-00755-5.


Engineered nanoparticles for precise targeted drug delivery and enhanced therapeutic efficacy in cancer immunotherapy.

Peng X, Fang J, Lou C, Yang L, Shan S, Wang Z Acta Pharm Sin B. 2024; 14(8):3432-3456.

PMID: 39220871 PMC: 11365410. DOI: 10.1016/j.apsb.2024.05.010.


Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy.

Wang Z, Zhou L, Wu X Oncol Res. 2024; 32(9):1479-1516.

PMID: 39220130 PMC: 11361912. DOI: 10.32604/or.2024.048564.


The Potential of Single-Chain Variable Fragment Antibody: Role in Future Therapeutic and Diagnostic Biologics.

Gezehagn Kussia G, Tessema T J Immunol Res. 2024; 2024:1804038.

PMID: 39156005 PMC: 11329312. DOI: 10.1155/2024/1804038.


Exploring treatment options in cancer: Tumor treatment strategies.

Liu B, Zhou H, Tan L, Siu K, Guan X Signal Transduct Target Ther. 2024; 9(1):175.

PMID: 39013849 PMC: 11252281. DOI: 10.1038/s41392-024-01856-7.


References
1.
Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G . Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019; 177(7):1701-1713.e16. DOI: 10.1016/j.cell.2019.04.041. View

2.
Guedan S, Calderon H, Posey Jr A, Maus M . Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2019; 12:145-156. PMC: 6330382. DOI: 10.1016/j.omtm.2018.12.009. View

3.
Sotillo E, Barrett D, Black K, Bagashev A, Oldridge D, Wu G . Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015; 5(12):1282-95. PMC: 4670800. DOI: 10.1158/2159-8290.CD-15-1020. View

4.
De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J . Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A. 2006; 103(12):4586-91. PMC: 1450215. DOI: 10.1073/pnas.0505379103. View

5.
He Q, Jiang X, Zhou X, Weng J . Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol. 2019; 12(1):139. PMC: 6921533. DOI: 10.1186/s13045-019-0812-8. View