» Articles » PMID: 35798752

Nanoscale Organization of Two-dimensional Multimeric PMHC Reagents with DNA Origami for CD8 T Cell Detection

Overview
Journal Nat Commun
Specialty Biology
Date 2022 Jul 7
PMID 35798752
Authors
Affiliations
Soon will be listed here.
Abstract

Peptide-MHC (pMHC) multimers have excelled in the detection of antigen-specific T cells and have allowed phenotypic analysis using other reagents, but their use for detection of low-affinity T cells remains a challenge. Here we develop a multimeric T cell identifying reagent platform using two-dimensional DNA origami scaffolds to spatially organize pMHCs (termed as dorimers) with nanoscale control. We show that these dorimers enhance the binding avidity for low-affinity antigen-specific T cell receptors (TCRs). The dorimers are able to detect more antigen-specific T cells in mouse CD8 T cells and early-stage CD4CD8 double-positive thymocytes that express less dense TCRs, compared with the equivalent tetramers and dextramers. Moreover, we demonstrate dorimer function in the analysis of autoimmune CD8 T cells that express low-affinity TCRs, which are difficult to detect using tetramers. We anticipate that dorimers could contribute to the investigation of antigen-specific T cells in immune T cell function or immunotherapy applications.

Citing Articles

DNA Nanotags for Multiplexed Single-Particle Electron Microscopy and Electron Cryotomography.

Chen Y, Huang Y, Yang Y JACS Au. 2025; 5(1):17-27.

PMID: 39886579 PMC: 11775714. DOI: 10.1021/jacsau.4c00986.


Designer cellular spheroids with DNA origami for drug screening.

Wei J, Sun Y, Wang H, Zhu T, Li L, Zhou Y Sci Adv. 2024; 10(29):eado9880.

PMID: 39028810 PMC: 11259176. DOI: 10.1126/sciadv.ado9880.


A Reconfigurable DNA Framework Nanotube-Assisted Antiangiogenic Therapy.

Li W, Wang Z, Su Q, Chen J, Wu Q, Sun X JACS Au. 2024; 4(4):1345-1355.

PMID: 38665667 PMC: 11040663. DOI: 10.1021/jacsau.3c00661.


Functional DNA as a Molecular Tool in Regulating Immunoreceptor-Ligand Interactions.

Sun L, Shen F, Qu Y, Liu Z JACS Au. 2023; 3(7):1820-1834.

PMID: 37502159 PMC: 10369416. DOI: 10.1021/jacsau.3c00291.


Recent Advances in DNA Origami-Engineered Nanomaterials and Applications.

Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q Chem Rev. 2023; 123(7):3976-4050.

PMID: 36990451 PMC: 10103138. DOI: 10.1021/acs.chemrev.3c00028.

References
1.
Dustin M, Bromley S, Davis M, Zhu C . Identification of self through two-dimensional chemistry and synapses. Annu Rev Cell Dev Biol. 2001; 17:133-57. DOI: 10.1146/annurev.cellbio.17.1.133. View

2.
Radvanyi L, Bernatchez C, Zhang M, Fox P, Miller P, Chacon J . Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012; 18(24):6758-70. PMC: 3525747. DOI: 10.1158/1078-0432.CCR-12-1177. View

3.
Altman J, Moss P, Goulder P, Barouch D, McHeyzer-Williams M, Bell J . Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996. 274: 94-96. J Immunol. 2011; 187(1):7-9. View

4.
Mallik L, Dhakal S, Nichols J, Mahoney J, Dosey A, Jiang S . Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami. ACS Nano. 2015; 9(7):7133-41. PMC: 5835357. DOI: 10.1021/acsnano.5b01841. View

5.
Huang D, Patel K, Perez-Garrido S, Marshall J, Palma M . DNA Origami Nanoarrays for Multivalent Investigations of Cancer Cell Spreading with Nanoscale Spatial Resolution and Single-Molecule Control. ACS Nano. 2018; 13(1):728-736. DOI: 10.1021/acsnano.8b08010. View