» Articles » PMID: 35732761

Two-dimensional Materials Prospects for Non-volatile Spintronic Memories

Abstract

Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin-orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.

Citing Articles

Low-Temperature Electron Spin Resonance Study of MnPS Antiferromagnetic Single Crystal.

Moro F, Wu B, Plutnarova I, Plutnar J, Sofer Z J Phys Chem C Nanomater Interfaces. 2024; 128(45):19306-19312.

PMID: 39564141 PMC: 11573119. DOI: 10.1021/acs.jpcc.4c06156.


Large unidirectional spin Hall magnetoresistance in FeNi/Pt/BiSe trilayers by Pt interfacial engineering.

Zhang Q, Tao K, Jia C, Xu G, Chai G, Zuo Y Nat Commun. 2024; 15(1):9450.

PMID: 39487155 PMC: 11530670. DOI: 10.1038/s41467-024-53884-0.


Intrinsic anomalous, spin and valley Hall effects in 'ex-so-tic' van-der-Waals structures.

Wojciechowska I, Dyrdal A Sci Rep. 2024; 14(1):23808.

PMID: 39394226 PMC: 11470101. DOI: 10.1038/s41598-024-74596-x.


Field-Free Spin-Orbit Torque Switching in Janus Chromium Dichalcogenides.

Vojacek L, Medina Duenas J, Li J, Ibrahim F, Manchon A, Roche S Nano Lett. 2024; 24(38):11889-11894.

PMID: 39267484 PMC: 11440640. DOI: 10.1021/acs.nanolett.4c03029.


Twist-angle-tunable spin texture in WSe/graphene van der Waals heterostructures.

Yang H, Martin-Garcia B, Kimak J, Schmoranzerova E, Dolan E, Chi Z Nat Mater. 2024; 23(11):1502-1508.

PMID: 39191981 DOI: 10.1038/s41563-024-01985-y.


References
1.
Ferrari A, Bonaccorso F, Falko V, Novoselov K, Roche S, Boggild P . Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 2015; 7(11):4598-810. DOI: 10.1039/c4nr01600a. View

2.
Sierra J, Fabian J, Kawakami R, Roche S, Valenzuela S . Van der Waals heterostructures for spintronics and opto-spintronics. Nat Nanotechnol. 2021; 16(8):856-868. DOI: 10.1038/s41565-021-00936-x. View

3.
Akinwande D, Huyghebaert C, Wang C, Serna M, Goossens S, Li L . Graphene and two-dimensional materials for silicon technology. Nature. 2019; 573(7775):507-518. DOI: 10.1038/s41586-019-1573-9. View

4.
Miron I, Garello K, Gaudin G, Zermatten P, Costache M, Auffret S . Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011; 476(7359):189-93. DOI: 10.1038/nature10309. View

5.
Liu L, Pai C, Li Y, Tseng H, Ralph D, Buhrman R . Spin-torque switching with the giant spin Hall effect of tantalum. Science. 2012; 336(6081):555-8. DOI: 10.1126/science.1218197. View