» Articles » PMID: 35728596

Presynaptic FMRP and Local Protein Synthesis Support Structural and Functional Plasticity of Glutamatergic Axon Terminals

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2022 Jun 21
PMID 35728596
Authors
Affiliations
Soon will be listed here.
Abstract

Learning and memory rely on long-lasting, synapse-specific modifications. Although postsynaptic forms of plasticity typically require local protein synthesis, whether and how local protein synthesis contributes to presynaptic changes remain unclear. Here, we examined the mouse hippocampal mossy fiber (MF)-CA3 synapse, which expresses both structural and functional presynaptic plasticity and contains presynaptic fragile X messenger ribonucleoprotein (FMRP), an RNA-binding protein involved in postsynaptic protein-synthesis-dependent plasticity. We report that MF boutons contain ribosomes and synthesize protein locally. The long-term potentiation of MF-CA3 synaptic transmission (MF-LTP) was associated with the translation-dependent enlargement of MF boutons. Remarkably, increasing in vitro or in vivo MF activity enhanced the protein synthesis in MFs. Moreover, the deletion of presynaptic FMRP blocked structural and functional MF-LTP, suggesting that FMRP is a critical regulator of presynaptic MF plasticity. Thus, presynaptic FMRP and protein synthesis dynamically control presynaptic structure and function in the mature mammalian brain.

Citing Articles

Axonal RNA localization is essential for long-term memory.

de Queiroz B, Laghrissi H, Rajeev S, Blot L, De Graeve F, Dehecq M Nat Commun. 2025; 16(1):2560.

PMID: 40089499 DOI: 10.1038/s41467-025-57651-7.


Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD.

Majumder P, Chatterjee B, Akter K, Ahsan A, Tan S, Huang C Cell Mol Biol Lett. 2025; 30(1):6.

PMID: 39815169 PMC: 11737055. DOI: 10.1186/s11658-024-00684-5.


Long non-coding RNA CASC15 enhances learning and memory in mice by promoting synaptic plasticity in hippocampal neurons.

Zou Y, Gao B, Lu J, Zhang K, Zhai M, Yuan Z Exploration (Beijing). 2024; 4(6):20230154.

PMID: 39713210 PMC: 11655312. DOI: 10.1002/EXP.20230154.


Epigenetic insights into Fragile X Syndrome.

Xie L, Li H, Xiao M, Chen N, Zang X, Liu Y Front Cell Dev Biol. 2024; 12:1432444.

PMID: 39220684 PMC: 11362040. DOI: 10.3389/fcell.2024.1432444.


Region-Related Differences in Short-Term Synaptic Plasticity and Synaptotagmin-7 in the Male and Female Hippocampus of a Rat Model of Fragile X Syndrome.

Tsotsokou G, Miliou A, Trompoukis G, Leontiadis L, Papatheodoropoulos C Int J Mol Sci. 2024; 25(13).

PMID: 39000085 PMC: 11240911. DOI: 10.3390/ijms25136975.


References
1.
Cohen L, Ziv N . Recent insights on principles of synaptic protein degradation. F1000Res. 2017; 6:675. PMC: 5461898. DOI: 10.12688/f1000research.10599.1. View

2.
Brown V, Jin P, Ceman S, Darnell J, ODonnell W, Tenenbaum S . Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell. 2001; 107(4):477-87. DOI: 10.1016/s0092-8674(01)00568-2. View

3.
Ivanco T, Greenough W . Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus. 2002; 12(1):47-54. DOI: 10.1002/hipo.10004. View

4.
Mayford M, Siegelbaum S, Kandel E . Synapses and memory storage. Cold Spring Harb Perspect Biol. 2012; 4(6). PMC: 3367555. DOI: 10.1101/cshperspect.a005751. View

5.
Darnell J, Klann E . The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci. 2013; 16(11):1530-6. PMC: 3999698. DOI: 10.1038/nn.3379. View