» Articles » PMID: 35504288

Mechanistic Insights into Actin Force Generation During Vesicle Formation from Cryo-electron Tomography

Overview
Journal Dev Cell
Publisher Cell Press
Date 2022 May 3
PMID 35504288
Authors
Affiliations
Soon will be listed here.
Abstract

Actin assembly provides force for a multitude of cellular processes. Compared to actin-assembly-based force production during cell migration, relatively little is understood about how actin assembly generates pulling forces for vesicle formation. Here, cryo-electron tomography identified actin filament number, organization, and orientation during clathrin-mediated endocytosis in human SK-MEL-2 cells, showing that force generation is robust despite variance in network organization. Actin dynamics simulations incorporating a measured branch angle indicate that sufficient force to drive membrane internalization is generated through polymerization and that assembly is triggered from ∼4 founding "mother" filaments, consistent with tomography data. Hip1R actin filament anchoring points are present along the entire endocytic invagination, where simulations show that it is key to pulling force generation, and along the neck, where it targets filament growth and makes internalization more robust. Actin organization described here allowed direct translation of structure to mechanism with broad implications for other actin-driven processes.

Citing Articles

Comparing simulations of actin filament compression reveals tradeoff between computational cost and capturing supertwist.

Lyons B, Mogre S, Vegesna K, Yu J, Hansen M, Raghunathan A MicroPubl Biol. 2025; 2025.

PMID: 39911911 PMC: 11795302. DOI: 10.17912/micropub.biology.001347.


Cryo-electron tomography pipeline for plasma membranes.

Sun W, Michalak D, Sochacki K, Kunamaneni P, Alfonzo-Mendez M, Arnold A Nat Commun. 2025; 16(1):855.

PMID: 39833141 PMC: 11747107. DOI: 10.1038/s41467-025-56045-z.


Spatial modeling algorithms for reactions and transport in biological cells.

Francis E, Laughlin J, Dokken J, Finsberg H, Lee C, Rognes M Nat Comput Sci. 2024; 5(1):76-89.

PMID: 39702839 PMC: 11774757. DOI: 10.1038/s43588-024-00745-x.


A role for cross-linking proteins in actin filament network organization and force generation.

Hill J, Cai S, Carver M, Drubin D Proc Natl Acad Sci U S A. 2024; 121(43):e2407838121.

PMID: 39405356 PMC: 11513903. DOI: 10.1073/pnas.2407838121.


Cryo-electron tomography pipeline for plasma membranes.

Sun W, Michalak D, Sochacki K, Kunamaneni P, Alfonzo-Mendez M, Arnold A bioRxiv. 2024; .

PMID: 39372776 PMC: 11451596. DOI: 10.1101/2024.06.27.600657.


References
1.
Clarke N, Royle S . FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy. Nat Commun. 2018; 9(1):2604. PMC: 6031641. DOI: 10.1038/s41467-018-04993-0. View

2.
Serwas D, Davies K . Getting Started with In Situ Cryo-Electron Tomography. Methods Mol Biol. 2020; 2215:3-23. DOI: 10.1007/978-1-0716-0966-8_1. View

3.
Yarar D, Waterman-Storer C, Schmid S . A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell. 2004; 16(2):964-75. PMC: 545926. DOI: 10.1091/mbc.e04-09-0774. View

4.
Morris K, Jones J, Halebian M, Wu S, Baker M, Armache J . Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nat Struct Mol Biol. 2019; 26(10):890-898. PMC: 7100586. DOI: 10.1038/s41594-019-0292-0. View

5.
De La Cruz E, Gardel M . Actin Mechanics and Fragmentation. J Biol Chem. 2015; 290(28):17137-44. PMC: 4498053. DOI: 10.1074/jbc.R115.636472. View