Mechanism of Actin Polymerization Revealed by Cryo-EM Structures of Actin Filaments with Three Different Bound Nucleotides
Overview
Authors
Affiliations
We used cryo-electron microscopy (cryo-EM) to reconstruct actin filaments with bound AMPPNP (β,γ-imidoadenosine 5'-triphosphate, an ATP analog, resolution 3.1 Å), ADP-P (ADP with inorganic phosphate, resolution 3.1 Å), or ADP (resolution 3.6 Å). Subunits in the three filaments have similar backbone conformations, so assembly rather than ATP hydrolysis or phosphate dissociation is responsible for their flattened conformation in filaments. Polymerization increases the rate of ATP hydrolysis by changing the positions of the side chains of Q137 and H161 in the active site. Flattening during assembly also promotes interactions along both the long-pitch and short-pitch helices. In particular, conformational changes in subdomain 3 open up multiple favorable interactions with the DNase-I binding loop in subdomain 2 of the adjacent subunit. Subunits at the barbed end of the filament are likely to be in this favorable conformation, while monomers are not. This difference explains why filaments grow faster at the barbed end than the pointed end. When phosphate dissociates from ADP-P-actin through a backdoor channel, the conformation of the C terminus changes so it distorts the DNase binding loop, which allows cofilin binding, and a network of interactions among S14, H73, G74, N111, R177, and G158 rearranges to open the phosphate release site.
Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors.
Schahl A, Lagardere L, Walker B, Ren P, Wioland H, Ballet M Nat Commun. 2025; 16(1):2304.
PMID: 40055316 PMC: 11889246. DOI: 10.1038/s41467-025-57458-6.
Bending stiffness of Toxoplasma gondii actin filaments.
Cao W, Sladewski T, Heaslip A, De La Cruz E J Biol Chem. 2024; 301(2):108101.
PMID: 39706262 PMC: 11786770. DOI: 10.1016/j.jbc.2024.108101.
The open to closed D-loop conformational switch determines length in filopodia-like actin bundles.
Gadsby J, Ioannou P, Butler R, Mason J, Smith A, Dobramysl U Biochem J. 2024; 481(24):1977-1995.
PMID: 39621444 PMC: 11668490. DOI: 10.1042/BCJ20240367.
Huang H, Suchenko A, Grandinetti G, Balasubramanian M, Chinthalapudi K, Heissler S Eur J Cell Biol. 2024; 103(4):151460.
PMID: 39393252 PMC: 11611453. DOI: 10.1016/j.ejcb.2024.151460.
Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature.
Aram L, de Haan D, Varsano N, Gilchrist J, Heintze C, Rotkopf R Nat Commun. 2024; 15(1):7888.
PMID: 39251596 PMC: 11385223. DOI: 10.1038/s41467-024-52211-x.