» Articles » PMID: 35292095

Target-oriented Prioritization: Targeted Selection Strategy by Integrating Organismal and Molecular Traits Through Predictive Analytics in Breeding

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2022 Mar 16
PMID 35292095
Authors
Affiliations
Soon will be listed here.
Abstract

Genomic prediction in crop breeding is hindered by modeling on limited phenotypic traits. We propose an integrative multi-trait breeding strategy via machine learning algorithm, target-oriented prioritization (TOP). Using a large hybrid maize population, we demonstrate that the accuracy for identifying a candidate that is phenotypically closest to an ideotype, or target variety, achieves up to 91%. The strength of TOP is enhanced when omics level traits are included. We show that TOP enables selection of inbreds or hybrids that outperform existing commercial varieties. It improves multiple traits and accurately identifies improved candidates for new varieties, which will greatly influence breeding.

Citing Articles

Synthetic biology and artificial intelligence in crop improvement.

Zhang D, Xu F, Wang F, Le L, Pu L Plant Commun. 2024; 6(2):101220.

PMID: 39668563 PMC: 11897457. DOI: 10.1016/j.xplc.2024.101220.


Enhancing Across-Population Genomic Prediction for Maize Hybrids.

Yu G, Li F, Wang X, Zhang Y, Zhou K, Yang W Plants (Basel). 2024; 13(21).

PMID: 39520023 PMC: 11548338. DOI: 10.3390/plants13213105.


Machine Learning for AI Breeding in Plants.

Cheng Q, Wang X Genomics Proteomics Bioinformatics. 2024; 22(4).

PMID: 38954837 PMC: 11479635. DOI: 10.1093/gpbjnl/qzae051.


Innovative computational tools provide new insights into the polyploid wheat genome.

Chen Y, Wang W, Yang Z, Peng H, Ni Z, Sun Q aBIOTECH. 2024; 5(1):52-70.

PMID: 38576428 PMC: 10987449. DOI: 10.1007/s42994-023-00131-7.


CropGS-Hub: a comprehensive database of genotype and phenotype resources for genomic prediction in major crops.

Chen J, Tan C, Zhu M, Zhang C, Wang Z, Ni X Nucleic Acids Res. 2023; 52(D1):D1519-D1529.

PMID: 38000385 PMC: 10767954. DOI: 10.1093/nar/gkad1062.


References
1.
Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C . Genetic analysis of the metabolome exemplified using a rice population. Proc Natl Acad Sci U S A. 2013; 110(50):20320-5. PMC: 3864304. DOI: 10.1073/pnas.1319681110. View

2.
Runcie D, Qu J, Cheng H, Crawford L . MegaLMM: Mega-scale linear mixed models for genomic predictions with thousands of traits. Genome Biol. 2021; 22(1):213. PMC: 8299638. DOI: 10.1186/s13059-021-02416-w. View

3.
Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S . Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A. 2003; 100(5):2574-9. PMC: 151382. DOI: 10.1073/pnas.0437907100. View

4.
Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J . Distant eQTLs and Non-coding Sequences Play Critical Roles in Regulating Gene Expression and Quantitative Trait Variation in Maize. Mol Plant. 2016; 10(3):414-426. DOI: 10.1016/j.molp.2016.06.016. View

5.
Hickey J, Chiurugwi T, Mackay I, Powell W . Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet. 2017; 49(9):1297-1303. DOI: 10.1038/ng.3920. View