» Articles » PMID: 35051350

Pseudouridine Synthases Modify Human Pre-mRNA Co-transcriptionally and Affect Pre-mRNA Processing

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2022 Jan 20
PMID 35051350
Authors
Affiliations
Soon will be listed here.
Abstract

Pseudouridine is a modified nucleotide that is prevalent in human mRNAs and is dynamically regulated. Here, we investigate when in their life cycle mRNAs become pseudouridylated to illuminate the potential regulatory functions of endogenous mRNA pseudouridylation. Using single-nucleotide resolution pseudouridine profiling on chromatin-associated RNA from human cells, we identified pseudouridines in nascent pre-mRNA at locations associated with alternatively spliced regions, enriched near splice sites, and overlapping hundreds of binding sites for RNA-binding proteins. In vitro splicing assays establish a direct effect of individual endogenous pre-mRNA pseudouridines on splicing efficiency. We validate hundreds of pre-mRNA sites as direct targets of distinct pseudouridine synthases and show that PUS1, PUS7, and RPUSD4-three pre-mRNA-modifying pseudouridine synthases with tissue-specific expression-control widespread changes in alternative pre-mRNA splicing and 3' end processing. Our results establish a vast potential for cotranscriptional pre-mRNA pseudouridylation to regulate human gene expression via alternative pre-mRNA processing.

Citing Articles

The zebrafish () snoRNAome.

Hamar R, Varga M NAR Genom Bioinform. 2025; 7(1):lqaf013.

PMID: 40046902 PMC: 11880993. DOI: 10.1093/nargab/lqaf013.


Epitranscriptomics in the Glioma Context: A Brief Overview.

Santamarina-Ojeda P, Fernandez A, Fraga M Cancers (Basel). 2025; 17(4).

PMID: 40002173 PMC: 11853273. DOI: 10.3390/cancers17040578.


Beyond housekeeping: a new role of snoRNA in nascent protein secretion.

Wu H, Liu C, Chen L Cell Res. 2025; .

PMID: 39828808 DOI: 10.1038/s41422-024-01070-8.


RNA modifications in cancer.

Wu H, Chen S, Li X, Li Y, Shi H, Qing Y MedComm (2020). 2025; 6(1):e70042.

PMID: 39802639 PMC: 11718328. DOI: 10.1002/mco2.70042.


Advanced reactivity-based sequencing methods for mRNA epitranscriptome profiling.

Cai Z, Song P, Yu K, Jia G RSC Chem Biol. 2025; 6(2):150-169.

PMID: 39759443 PMC: 11694185. DOI: 10.1039/d4cb00215f.


References
1.
Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K . Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018; 46(18):9289-9298. PMC: 6182160. DOI: 10.1093/nar/gky811. View

2.
Marceau C, Puschnik A, Majzoub K, Ooi Y, Brewer S, Fuchs G . Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature. 2016; 535(7610):159-63. PMC: 4964798. DOI: 10.1038/nature18631. View

3.
Festen E, Goyette P, Green T, Boucher G, Beauchamp C, Trynka G . A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease. PLoS Genet. 2011; 7(1):e1001283. PMC: 3029251. DOI: 10.1371/journal.pgen.1001283. View

4.
Ha K, Blencowe B, Morris Q . QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data. Genome Biol. 2018; 19(1):45. PMC: 5874996. DOI: 10.1186/s13059-018-1414-4. View

5.
Thorenoor N, Slaby O . Small nucleolar RNAs functioning and potential roles in cancer. Tumour Biol. 2014; 36(1):41-53. DOI: 10.1007/s13277-014-2818-8. View