» Articles » PMID: 34963480

Cobolt: Integrative Analysis of Multimodal Single-cell Sequencing Data

Overview
Journal Genome Biol
Specialties Biology
Genetics
Date 2021 Dec 29
PMID 34963480
Citations 56
Authors
Affiliations
Soon will be listed here.
Abstract

A growing number of single-cell sequencing platforms enable joint profiling of multiple omics from the same cells. We present Cobolt, a novel method that not only allows for analyzing the data from joint-modality platforms, but provides a coherent framework for the integration of multiple datasets measured on different modalities. We demonstrate its performance on multi-modality data of gene expression and chromatin accessibility and illustrate the integration abilities of Cobolt by jointly analyzing this multi-modality data with single-cell RNA-seq and ATAC-seq datasets.

Citing Articles

Gene expression knowledge graph for patient representation and diabetes prediction.

Sousa R, Paulheim H J Biomed Semantics. 2025; 16(1):2.

PMID: 40057806 PMC: 11889825. DOI: 10.1186/s13326-025-00325-6.


Combining single-cell ATAC and RNA sequencing for supervised cell annotation.

Gill J, Dasgupta A, Manry B, Markuzon N BMC Bioinformatics. 2025; 26(1):67.

PMID: 40011801 PMC: 11863512. DOI: 10.1186/s12859-025-06084-6.


scMFG: a single-cell multi-omics integration method based on feature grouping.

Ma L, Liu J, Sun W, Zhao C, Yu L BMC Genomics. 2025; 26(1):132.

PMID: 39934664 PMC: 11817349. DOI: 10.1186/s12864-025-11319-0.


AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships.

Wu Y, Xie L Comput Struct Biotechnol J. 2025; 27:265-277.

PMID: 39886532 PMC: 11779603. DOI: 10.1016/j.csbj.2024.12.030.


scMMAE: masked cross-attention network for single-cell multimodal omics fusion to enhance unimodal omics.

Meng D, Feng Y, Yuan K, Yu Z, Cao Q, Cheng L Brief Bioinform. 2025; 26(1).

PMID: 39851073 PMC: 11757910. DOI: 10.1093/bib/bbaf010.


References
1.
Gonzalez-Blas C, Minnoye L, Papasokrati D, Aibar S, Hulselmans G, Christiaens V . cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat Methods. 2019; 16(5):397-400. PMC: 6517279. DOI: 10.1038/s41592-019-0367-1. View

2.
Franzen O, Gan L, Bjorkegren J . PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford). 2019; 2019. PMC: 6450036. DOI: 10.1093/database/baz046. View

3.
Saelens W, Cannoodt R, Todorov H, Saeys Y . A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019; 37(5):547-554. DOI: 10.1038/s41587-019-0071-9. View

4.
Qiu X, Hill A, Packer J, Lin D, Ma Y, Trapnell C . Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3):309-315. PMC: 5330805. DOI: 10.1038/nmeth.4150. View

5.
Hao Y, Hao S, Andersen-Nissen E, Mauck 3rd W, Zheng S, Butler A . Integrated analysis of multimodal single-cell data. Cell. 2021; 184(13):3573-3587.e29. PMC: 8238499. DOI: 10.1016/j.cell.2021.04.048. View