» Articles » PMID: 28114287

Single-cell MRNA Quantification and Differential Analysis with Census

Overview
Journal Nat Methods
Date 2017 Jan 24
PMID 28114287
Citations 799
Authors
Affiliations
Soon will be listed here.
Abstract

Single-cell gene expression studies promise to reveal rare cell types and cryptic states, but the high variability of single-cell RNA-seq measurements frustrates efforts to assay transcriptional differences between cells. We introduce the Census algorithm to convert relative RNA-seq expression levels into relative transcript counts without the need for experimental spike-in controls. Analyzing changes in relative transcript counts led to dramatic improvements in accuracy compared to normalized read counts and enabled new statistical tests for identifying developmentally regulated genes. Census counts can be analyzed with widely used regression techniques to reveal changes in cell-fate-dependent gene expression, splicing patterns and allelic imbalances. We reanalyzed single-cell data from several developmental and disease studies, and demonstrate that Census enabled robust analysis at multiple layers of gene regulation. Census is freely available through our updated single-cell analysis toolkit, Monocle 2.

Citing Articles

NLRP4 unlocks an NK/macrophages-centered ecosystem to suppress non-small cell lung cancer.

Meng Z, Li J, Wang H, Cao Z, Lu W, Niu X Biomark Res. 2025; 13(1):44.

PMID: 40087771 DOI: 10.1186/s40364-025-00756-4.


Integrated analysis of single-cell and bulk transcriptomes uncovers clinically relevant molecular subtypes in human prostate cancer.

Ding T, He L, Lin G, Xu L, Zhu Y, Wang X Chin J Cancer Res. 2025; 37(1):90-114.

PMID: 40078560 PMC: 11893346. DOI: 10.21147/j.issn.1000-9604.2025.01.07.


Intrapancreatic adipocytes and beta cell dedifferentiation in human type 2 diabetes.

Zhang N, Sun Q, Zhang J, Zhang R, Liu S, Zhao X Diabetologia. 2025; .

PMID: 40072535 DOI: 10.1007/s00125-025-06392-9.


Gene regulatory network inference during cell fate decisions by perturbation strategies.

Hu Q, Lu X, Xue Z, Wang R NPJ Syst Biol Appl. 2025; 11(1):23.

PMID: 40032872 PMC: 11876352. DOI: 10.1038/s41540-025-00504-2.


Identification of intratumoral microbiome-driven immune modulation and therapeutic implications in diffuse large B-cell lymphoma.

Yijia Z, Li X, Ma L, Wang S, Du H, Wu Y Cancer Immunol Immunother. 2025; 74(4):131.

PMID: 40029433 PMC: 11876501. DOI: 10.1007/s00262-025-03972-x.


References
1.
Segerstolpe A, Palasantza A, Eliasson P, Andersson E, Andreasson A, Sun X . Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab. 2016; 24(4):593-607. PMC: 5069352. DOI: 10.1016/j.cmet.2016.08.020. View

2.
Bray N, Pimentel H, Melsted P, Pachter L . Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5):525-7. DOI: 10.1038/nbt.3519. View

3.
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek A . MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16:278. PMC: 4676162. DOI: 10.1186/s13059-015-0844-5. View

4.
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X . Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell. 2010; 6(5):468-78. PMC: 2954317. DOI: 10.1016/j.stem.2010.03.015. View

5.
Perrin B, Ervasti J . The actin gene family: function follows isoform. Cytoskeleton (Hoboken). 2010; 67(10):630-4. PMC: 2949686. DOI: 10.1002/cm.20475. View