» Articles » PMID: 34955761

Cortical Cartography: Mapping Arealization Using Single-Cell Omics Technology

Overview
Date 2021 Dec 27
PMID 34955761
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

The cerebral cortex derives its cognitive power from a modular network of specialized areas processing a multitude of information. The assembly and organization of these regions is vital for human behavior and perception, as evidenced by the prevalence of area-specific phenotypes that manifest in neurodevelopmental and psychiatric disorders. Generations of scientists have examined the architecture of the human cortex, but efforts to capture the gene networks which drive arealization have been hampered by the lack of tractable models of human neurodevelopment. Advancements in "omics" technologies, imaging, and computational power have enabled exciting breakthroughs into the molecular and structural characteristics of cortical areas, including transcriptomic, epigenomic, metabolomic, and proteomic profiles of mammalian models. Here we review the single-omics atlases that have shaped our current understanding of cortical areas, and their potential to fuel a new era of multi-omic single-cell endeavors to interrogate both the developing and adult human cortex.

Citing Articles

Organization of the human cerebral cortex estimated within individuals: networks, global topography, and function.

Du J, DiNicola L, Angeli P, Saadon-Grosman N, Sun W, Kaiser S J Neurophysiol. 2024; 131(6):1014-1082.

PMID: 38489238 PMC: 11383390. DOI: 10.1152/jn.00308.2023.


Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain.

Liu H, Zeng Q, Zhou J, Bartlett A, Wang B, Berube P Nature. 2023; 624(7991):366-377.

PMID: 38092913 PMC: 10719113. DOI: 10.1038/s41586-023-06805-y.


Within-Individual Organization of the Human Cerebral Cortex: Networks, Global Topography, and Function.

Du J, DiNicola L, Angeli P, Saadon-Grosman N, Sun W, Kaiser S bioRxiv. 2023; .

PMID: 37609246 PMC: 10441314. DOI: 10.1101/2023.08.08.552437.


Developmental mechanisms underlying the evolution of human cortical circuits.

Vanderhaeghen P, Polleux F Nat Rev Neurosci. 2023; 24(4):213-232.

PMID: 36792753 PMC: 10064077. DOI: 10.1038/s41583-023-00675-z.

References
1.
Del Pino I, Rico B, Marin O . Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Curr Opin Neurobiol. 2018; 48:174-182. DOI: 10.1016/j.conb.2017.12.013. View

2.
Pouchelon G, Gambino F, Bellone C, Telley L, Vitali I, Luscher C . Modality-specific thalamocortical inputs instruct the identity of postsynaptic L4 neurons. Nature. 2014; 511(7510):471-4. DOI: 10.1038/nature13390. View

3.
De Marco Garcia N, Priya R, Tuncdemir S, Fishell G, Karayannis T . Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci. 2015; 18(3):393-401. PMC: 4624196. DOI: 10.1038/nn.3946. View

4.
Zhang Z, Zhou J, Tan P, Pang Y, Rivkin A, Kirchgessner M . Epigenomic diversity of cortical projection neurons in the mouse brain. Nature. 2021; 598(7879):167-173. PMC: 8494636. DOI: 10.1038/s41586-021-03223-w. View

5.
Camp J, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Brauninger M . Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015; 112(51):15672-7. PMC: 4697386. DOI: 10.1073/pnas.1520760112. View