» Articles » PMID: 25664912

Sensory Inputs Control the Integration of Neurogliaform Interneurons into Cortical Circuits

Overview
Journal Nat Neurosci
Date 2015 Feb 10
PMID 25664912
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Neuronal microcircuits in the superficial layers of the mammalian cortex provide the substrate for associative cortical computation. Inhibitory interneurons constitute an essential component of the circuitry and are fundamental to the integration of local and long-range information. Here we report that, during early development, superficially positioned Reelin-expressing neurogliaform interneurons in the mouse somatosensory cortex receive afferent innervation from both cortical and thalamic excitatory sources. Attenuation of ascending sensory, but not intracortical, excitation leads to axo-dendritic morphological defects in these interneurons. Moreover, abrogation of the NMDA receptors through which the thalamic inputs signal results in a similar phenotype, as well as in the selective loss of thalamic and a concomitant increase in intracortical connectivity. These results suggest that thalamic inputs are critical in determining the balance between local and long-range connectivity and are fundamental to the proper integration of Reelin-expressing interneurons into nascent cortical circuits.

Citing Articles

Translaminar synchronous neuronal activity is required for columnar synaptic strengthening in the mouse neocortex.

Vargas-Ortiz J, Lin L, Martinez V, Liu R, Babij R, Duan Z Nat Commun. 2025; 16(1):1296.

PMID: 39900899 PMC: 11791040. DOI: 10.1038/s41467-024-55783-w.


Postnatal development of vasoactive intestinal polypeptide-expressing GABAergic interneurons in mouse somatosensory cortex.

Simacek C, Kirischuk S, Mittmann T Acta Physiol (Oxf). 2025; 241(2):e14265.

PMID: 39803724 PMC: 11726421. DOI: 10.1111/apha.14265.


The chemokine Cxcl14 regulates interneuron differentiation in layer I of the somatosensory cortex.

Iannone A, Akgul G, Zhang R, Wacks S, Hussein N, Macias C Cell Rep. 2024; 43(8):114531.

PMID: 39058591 PMC: 11373301. DOI: 10.1016/j.celrep.2024.114531.


Interneuron Diversity: How Form Becomes Function.

De Marco Garcia N, Fishell G Cold Spring Harb Perspect Biol. 2024; .

PMID: 39038846 PMC: 11751130. DOI: 10.1101/cshperspect.a041513.


GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function.

Haikonen J, Szrinivasan R, Ojanen S, Rhee J, Ryazantseva M, Sulku J Mol Psychiatry. 2024; 29(12):3752-3768.

PMID: 38942774 PMC: 11609095. DOI: 10.1038/s41380-024-02641-2.


References
1.
Vue T, Lee M, Ei Tan Y, Werkhoven Z, Wang L, Nakagawa Y . Thalamic control of neocortical area formation in mice. J Neurosci. 2013; 33(19):8442-53. PMC: 3732791. DOI: 10.1523/JNEUROSCI.5786-12.2013. View

2.
Morishita H, Hensch T . Critical period revisited: impact on vision. Curr Opin Neurobiol. 2008; 18(1):101-7. DOI: 10.1016/j.conb.2008.05.009. View

3.
Toda T, Homma D, Tokuoka H, Hayakawa I, Sugimoto Y, Ichinose H . Birth regulates the initiation of sensory map formation through serotonin signaling. Dev Cell. 2013; 27(1):32-46. DOI: 10.1016/j.devcel.2013.09.002. View

4.
Miyamichi K, Luo L . Neuroscience. Brain wiring by presorting axons. Science. 2009; 325(5940):544-5. DOI: 10.1126/science.1178117. View

5.
Fu Y, Tucciarone J, Espinosa J, Sheng N, Darcy D, Nicoll R . A cortical circuit for gain control by behavioral state. Cell. 2014; 156(6):1139-1152. PMC: 4041382. DOI: 10.1016/j.cell.2014.01.050. View