» Articles » PMID: 34798057

Transcription-wide Mapping of Dihydrouridine Reveals That MRNA Dihydrouridylation is Required for Meiotic Chromosome Segregation

Abstract

The epitranscriptome has emerged as a new fundamental layer of control of gene expression. Nevertheless, the determination of the transcriptome-wide occupancy and function of RNA modifications remains challenging. Here we have developed Rho-seq, an integrated pipeline detecting a range of modifications through differential modification-dependent rhodamine labeling. Using Rho-seq, we confirm that the reduction of uridine to dihydrouridine (D) by the Dus reductase enzymes targets tRNAs in E. coli and fission yeast. We find that the D modification is also present on fission yeast mRNAs, particularly those encoding cytoskeleton-related proteins, which is supported by large-scale proteome analyses and ribosome profiling. We show that the α-tubulin encoding mRNA nda2 undergoes Dus3-dependent dihydrouridylation, which affects its translation. The absence of the modification on nda2 mRNA strongly impacts meiotic chromosome segregation, resulting in low gamete viability. Applying Rho-seq to human cells revealed that tubulin mRNA dihydrouridylation is evolutionarily conserved.

Citing Articles

Cross-Kingdom Pathogenesis of CQ10: Insights from Transcriptome and Proteome Analyses.

Su J, Yao B, Huang R, Liu X, Zhang Z, Zhang Y Microorganisms. 2024; 12(11).

PMID: 39597586 PMC: 11596184. DOI: 10.3390/microorganisms12112197.


Global Co-regulatory Cross Talk Between mA and mC RNA Methylation Systems Coordinate Cellular Responses and Brain Disease Pathways.

Orji O, Stones J, Rajani S, Markus R, Demirbugen Oz M, Knight H Mol Neurobiol. 2024; 62(4):5006-5021.

PMID: 39499421 PMC: 11880056. DOI: 10.1007/s12035-024-04555-0.


Differential redox sensitivity of tRNA dihydrouridylation.

Kilz L, Zimmermann S, Marchand V, Bourguignon V, Sudol C, Bregeon D Nucleic Acids Res. 2024; 52(21):12784-12797.

PMID: 39460624 PMC: 11602153. DOI: 10.1093/nar/gkae964.


All the sites we cannot see: Sources and mitigation of false negatives in RNA modification studies.

Oberdoerffer S, Gilbert W Nat Rev Mol Cell Biol. 2024; 26(3):237-248.

PMID: 39433914 DOI: 10.1038/s41580-024-00784-2.


Human DUS1L catalyzes dihydrouridine modification at tRNA positions 16/17, and DUS1L overexpression perturbs translation.

Matsuura J, Akichika S, Wei F, Suzuki T, Yamamoto T, Watanabe Y Commun Biol. 2024; 7(1):1238.

PMID: 39354220 PMC: 11445529. DOI: 10.1038/s42003-024-06942-8.


References
1.
Lecanda A, Nilges B, Sharma P, Nedialkova D, Schwarz J, Vaquerizas J . Dual randomization of oligonucleotides to reduce the bias in ribosome-profiling libraries. Methods. 2016; 107:89-97. PMC: 5024760. DOI: 10.1016/j.ymeth.2016.07.011. View

2.
Hidese R, Mihara H, Kurihara T, Esaki N . Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol. 2010; 193(4):989-93. PMC: 3028684. DOI: 10.1128/JB.01178-10. View

3.
Edmonds C, Crain P, Gupta R, Hashizume T, Hocart C, Kowalak J . Posttranscriptional modification of tRNA in thermophilic archaea (Archaebacteria). J Bacteriol. 1991; 173(10):3138-48. PMC: 207908. DOI: 10.1128/jb.173.10.3138-3148.1991. View

4.
Lin S, Liu Q, Jiang Y, Gregory R . Nucleotide resolution profiling of mG tRNA modification by TRAC-Seq. Nat Protoc. 2019; 14(11):3220-3242. PMC: 8959837. DOI: 10.1038/s41596-019-0226-7. View

5.
Materne P, Anandhakumar J, Migeot V, Soriano I, Yague-Sanz C, Hidalgo E . Promoter nucleosome dynamics regulated by signalling through the CTD code. Elife. 2015; 4:e09008. PMC: 4502402. DOI: 10.7554/eLife.09008. View