» Articles » PMID: 21628433

Fluorescent Labeling of TRNA Dihydrouridine Residues: Mechanism and Distribution

Overview
Journal RNA
Specialty Molecular Biology
Date 2011 Jun 2
PMID 21628433
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Dihydrouridine (DHU) positions within tRNAs have long been used as sites to covalently attach fluorophores, by virtue of their unique chemical reactivity toward reduction by NaBH(4), their abundance within prokaryotic and eukaryotic tRNAs, and the biochemical functionality of the labeled tRNAs so produced. Interpretation of experiments employing labeled tRNAs can depend on knowing the distribution of dye among the DHU positions present in a labeled tRNA. Here we combine matrix-assisted laser desorption/ionization mass spectroscopy (MALDI-MS) analysis of oligonucleotide fragments and thin layer chromatography to resolve and quantify sites of DHU labeling by the fluorophores Cy3, Cy5, and proflavin in Escherichia coli tRNA(Phe) and E. coli tRNA(Arg). The MALDI-MS results led us to re-examine the precise chemistry of the reactions that result in fluorophore introduction into tRNA. We demonstrate that, in contrast to an earlier suggestion that has long been unchallenged in the literature, such introduction proceeds via a substitution reaction on tetrahydrouridine, the product of NaBH(4) reduction of DHU, resulting in formation of substituted tetrahydrocytidines within tRNA.

Citing Articles

[Advances in mapping analysis of ribonucleic acid modifications through sequencing].

Xiong J, Feng T, Yuan B Se Pu. 2024; 42(7):632-645.

PMID: 38966972 PMC: 11224946. DOI: 10.3724/SP.J.1123.2023.12025.


The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function.

Finet O, Yague-Sanz C, Marchand F, Hermand D RNA Biol. 2022; 19(1):735-750.

PMID: 35638108 PMC: 9176250. DOI: 10.1080/15476286.2022.2078094.


Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA.

Draycott A, Schaening-Burgos C, Rojas-Duran M, Wilson L, Scharfen L, Neugebauer K PLoS Biol. 2022; 20(5):e3001622.

PMID: 35609439 PMC: 9129914. DOI: 10.1371/journal.pbio.3001622.


Epitranscriptomic mapping of RNA modifications at single-nucleotide resolution using rhodamine sequencing (Rho-seq).

Finet O, Yague-Sanz C, Hermand D STAR Protoc. 2022; 3(2):101369.

PMID: 35573476 PMC: 9092995. DOI: 10.1016/j.xpro.2022.101369.


Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation.

Finet O, Yague-Sanz C, Kruger L, Tran P, Migeot V, Louski M Mol Cell. 2021; 82(2):404-419.e9.

PMID: 34798057 PMC: 8792297. DOI: 10.1016/j.molcel.2021.11.003.


References
1.
Bharill S, Chen C, Stevens B, Kaur J, Smilansky Z, Mandecki W . Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation. ACS Nano. 2010; 5(1):399-407. PMC: 3049198. DOI: 10.1021/nn101839t. View

2.
Chen C, Stevens B, Kaur J, Cabral D, Liu H, Wang Y . Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol Cell. 2011; 42(3):367-77. PMC: 3090999. DOI: 10.1016/j.molcel.2011.03.024. View

3.
Kirpekar F, Douthwaite S, Roepstorff P . Mapping posttranscriptional modifications in 5S ribosomal RNA by MALDI mass spectrometry. RNA. 2000; 6(2):296-306. PMC: 1369914. DOI: 10.1017/s1355838200992148. View

4.
Berhane B, Limbach P . Functional microfabricated sample targets for matrix-assisted laser desorption/ionization mass spectrometry analysis of ribonucleic acids. Anal Chem. 2003; 75(9):1997-2003. DOI: 10.1021/ac020710i. View

5.
Pan D, Kirillov S, Cooperman B . Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell. 2007; 25(4):519-29. PMC: 1995019. DOI: 10.1016/j.molcel.2007.01.014. View