» Articles » PMID: 34779563

Adaptive Homeostasis and the P53 Isoform Network

Overview
Journal EMBO Rep
Specialty Molecular Biology
Date 2021 Nov 15
PMID 34779563
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long-term survival of multicellular organisms (animals) in response to an ever-changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.

Citing Articles

Expression of Neuronal Nicotinic Acetylcholine Receptor and Early Oxidative DNA Damage in Aging Rat Brain-The Effects of Memantine.

Lewandowska M, Rozycka A, Grzelak T, Kempisty B, Jagodzinski P, Lianeri M Int J Mol Sci. 2025; 26(4).

PMID: 40004097 PMC: 11855568. DOI: 10.3390/ijms26041634.


Spatiotemporal profile of an optimal host response to virus infection in the primate central nervous system.

Maximova O, Anzick S, Sturdevant D, Bennett R, Faucette L, St Claire M PLoS Pathog. 2025; 21(1):e1012530.

PMID: 39841753 PMC: 11753669. DOI: 10.1371/journal.ppat.1012530.


Identification and characterization of a novel upstream promoter of zebrafish p53 gene.

Tian X, Zhu Z, Li W, Zhang J, Han B Mol Biol Rep. 2024; 52(1):15.

PMID: 39589571 DOI: 10.1007/s11033-024-10112-8.


Thermal stress, p53 structures and learning from elephants.

Karakostis K, Padariya M, Thermou A, Fahraeus R, Kalathiya U, Vollrath F Cell Death Discov. 2024; 10(1):353.

PMID: 39107279 PMC: 11303390. DOI: 10.1038/s41420-024-02109-w.


Dominant suppressor genes of p53-induced apoptosis in Drosophila melanogaster.

Szlanka T, Lukacsovich T, Balint E, Viragh E, Szabo K, Hajdu I G3 (Bethesda). 2024; 14(9).

PMID: 38985658 PMC: 11373661. DOI: 10.1093/g3journal/jkae149.


References
1.
Ali A, Farooqui S, Rai J, Singh J, Kumar V, Mishra R . HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020; 529(4):1038-1044. DOI: 10.1016/j.bbrc.2020.05.188. View

2.
Fan Y, Sanyal S, Bruzzone R . Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol. 2018; 8:396. PMC: 6252338. DOI: 10.3389/fcimb.2018.00396. View

3.
Xiao Q, Zhang G, Wang H, Chen L, Lu S, Pan D . A p53-based genetic tracing system to follow postnatal cardiomyocyte expansion in heart regeneration. Development. 2017; 144(4):580-589. DOI: 10.1242/dev.147827. View

4.
Zhang S, Zheng M, Kibe R, Huang Y, Marrero L, Warren S . Trp53 negatively regulates autoimmunity via the STAT3-Th17 axis. FASEB J. 2011; 25(7):2387-98. PMC: 3114529. DOI: 10.1096/fj.10-175299. View

5.
Donehower L, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M . Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019; 28(5):1370-1384.e5. PMC: 7546539. DOI: 10.1016/j.celrep.2019.07.001. View