» Articles » PMID: 22647703

Influenza A Viruses Control Expression of Proviral Human P53 Isoforms P53β and Delta133p53α

Overview
Journal J Virol
Date 2012 Jun 1
PMID 22647703
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.

Citing Articles

Increased Expression of the Δ133p53β Isoform Enhances Brain Metastasis.

Jesus A, Taha A, Wang D, Mehta P, Mehta S, Reily-Bell A Int J Mol Sci. 2023; 24(2).

PMID: 36674782 PMC: 9866425. DOI: 10.3390/ijms24021267.


How Influenza A Virus NS1 Deals with the Ubiquitin System to Evade Innate Immunity.

Lamotte L, Tafforeau L Viruses. 2021; 13(11).

PMID: 34835115 PMC: 8619935. DOI: 10.3390/v13112309.


Adaptive homeostasis and the p53 isoform network.

Mehta S, Campbell H, Drummond C, Li K, Murray K, Slatter T EMBO Rep. 2021; 22(12):e53085.

PMID: 34779563 PMC: 8647153. DOI: 10.15252/embr.202153085.


Δ133p53β isoform pro-invasive activity is regulated through an aggregation-dependent mechanism in cancer cells.

Arsic N, Slatter T, Gadea G, Villain E, Fournet A, Kazantseva M Nat Commun. 2021; 12(1):5463.

PMID: 34526502 PMC: 8443592. DOI: 10.1038/s41467-021-25550-2.


The Balance between p53 Isoforms Modulates the Efficiency of HIV-1 Infection in Macrophages.

Breton Y, Barat C, Tremblay M J Virol. 2021; 95(20):e0118821.

PMID: 34379507 PMC: 8475534. DOI: 10.1128/JVI.01188-21.


References
1.
Turpin E, Luke K, Jones J, Tumpey T, Konan K, Schultz-Cherry S . Influenza virus infection increases p53 activity: role of p53 in cell death and viral replication. J Virol. 2005; 79(14):8802-11. PMC: 1168730. DOI: 10.1128/JVI.79.14.8802-8811.2005. View

2.
Whiley D, Sloots T . A 5'-nuclease real-time reverse transcriptase-polymerase chain reaction assay for the detection of a broad range of influenza A subtypes, including H5N1. Diagn Microbiol Infect Dis. 2005; 53(4):335-7. DOI: 10.1016/j.diagmicrobio.2005.08.002. View

3.
Duchamp M, Casalegno J, Gillet Y, Frobert E, Bernard E, Escuret V . Pandemic A(H1N1)2009 influenza virus detection by real time RT-PCR: is viral quantification useful?. Clin Microbiol Infect. 2010; 16(4):317-21. DOI: 10.1111/j.1469-0691.2010.03169.x. View

4.
Shen Y, Wang X, Guo L, Qiu Y, Li X, Yu H . Influenza A virus induces p53 accumulation in a biphasic pattern. Biochem Biophys Res Commun. 2009; 382(2):331-5. DOI: 10.1016/j.bbrc.2009.03.018. View

5.
Ludwig S, Pleschka S, Planz O, Wolff T . Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol. 2006; 8(3):375-86. DOI: 10.1111/j.1462-5822.2005.00678.x. View