» Articles » PMID: 34714684

Selective Isomer Emission Via Funneling of Exciton Polaritons

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Oct 29
PMID 34714684
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Polaritons in organic systems has shown the potential to modify chemical properties and to mediate long-range energy transfer between individual chromophores, among other capabilities. Here, we demonstrate that strong coupling and formation of organic exciton-polaritons can be used to selectively tune the isomer emission of organic molecules. By taking advantage of their delocalized and hybrid character, polaritons emerging in the strong coupling regime open a new relaxation pathway that allows for an efficient funneling of the excitation between the molecular isomers. We implement this by strong coupling to -DCS (-4-dimethylamino-4′cyanostilbene)molecules, which present two isomers in different amounts when immersed in a polymer matrix. Thanks to this new relaxation pathway, the photoexcitation that is first shared by the common polaritonic mode is then selectively funneled to the excited states of one of the isomers, recognizing pure emission from the isomeric states that do not contribute to emission under normal conditions.

Citing Articles

Semiclassical Truncated-Wigner-Approximation Theory of Molecular Exciton-Polariton Dynamics in Optical Cavities.

Thanh Phuc N J Chem Theory Comput. 2025; 21(4):1509-1520.

PMID: 39908472 PMC: 11867104. DOI: 10.1021/acs.jctc.4c01278.


The Rise and Current Status of Polaritonic Photochemistry and Photophysics.

Bhuyan R, Mony J, Kotov O, Castellanos G, Gomez Rivas J, Shegai T Chem Rev. 2023; 123(18):10877-10919.

PMID: 37683254 PMC: 10540218. DOI: 10.1021/acs.chemrev.2c00895.


Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.

Mandal A, Taylor M, Weight B, Koessler E, Li X, Huo P Chem Rev. 2023; 123(16):9786-9879.

PMID: 37552606 PMC: 10450711. DOI: 10.1021/acs.chemrev.2c00855.


Sub-picosecond collapse of molecular polaritons to pure molecular transition in plasmonic photoswitch-nanoantennas.

Kuttruff J, Romanelli M, Pedrueza-Villalmanzo E, Allerbeck J, Fregoni J, Saavedra-Becerril V Nat Commun. 2023; 14(1):3875.

PMID: 37414750 PMC: 10325968. DOI: 10.1038/s41467-023-39413-5.


Surface hopping modeling of charge and energy transfer in active environments.

Toldo J, do Casal M, Ventura E, do Monte S, Barbatti M Phys Chem Chem Phys. 2023; 25(12):8293-8316.

PMID: 36916738 PMC: 10034598. DOI: 10.1039/d3cp00247k.


References
1.
Strickler J, Webb W . Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt Lett. 2009; 16(22):1780-2. DOI: 10.1364/ol.16.001780. View

2.
Yu Y, Mallick S, Wang M, Borjesson K . Barrier-free reverse-intersystem crossing in organic molecules by strong light-matter coupling. Nat Commun. 2021; 12(1):3255. PMC: 8167092. DOI: 10.1038/s41467-021-23481-6. View

3.
Borowiak M, Grobelna B, Synak A, Bojarski P, Kubicki A . Time-resolved emission spectra of 4-dimethylamino-4'-cyano-stilbene and resveratrol in high viscosity solvents and silica matrices. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 115:111-7. DOI: 10.1016/j.saa.2013.06.036. View

4.
Han W, Lovell T, Liu T, Noodleman L . Density functional studies of the ground- and excited-state potential-energy curves of stilbene cis-trans isomerization. Chemphyschem. 2002; 3(2):167-78. DOI: 10.1002/1439-7641(20020215)3:2<167::AID-CPHC167>3.0.CO;2-G. View

5.
Coles D, Somaschi N, Michetti P, Clark C, Lagoudakis P, Savvidis P . Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat Mater. 2014; 13(7):712-9. DOI: 10.1038/nmat3950. View