» Articles » PMID: 30085671

Coherent Light Harvesting Through Strong Coupling to Confined Light

Overview
Specialty Chemistry
Date 2018 Aug 8
PMID 30085671
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

When photoactive molecules interact strongly with confined light modes, new hybrid light-matter states may form: the polaritons. These polaritons are coherent superpositions of excitations of the molecules and of the cavity photon. Recently, polaritons were shown to mediate energy transfer between chromophores at distances beyond the Förster limit. Here we explore the potential of strong coupling for light-harvesting applications by means of atomistic molecular dynamics simulations of mixtures of photoreactive and non-photo-reactive molecules strongly coupled to a single confined light mode. These molecules are spatially separated and present at different concentrations. Our simulations suggest that while the excitation is initially fully delocalized over all molecules and the confined light mode, it very rapidly localizes onto one of the photoreactive molecules, which then undergoes the reaction.

Citing Articles

Deciphering between enhanced light emission and absorption in multi-mode porphyrin cavity polariton samples.

Odewale E, Avramenko A, Rury A Nanophotonics. 2024; 13(14):2695-2706.

PMID: 39678670 PMC: 11636455. DOI: 10.1515/nanoph-2023-0748.


Extracting kinetic information from short-time trajectories: relaxation and disorder of lossy cavity polaritons.

Wu A, Cerrillo J, Cao J Nanophotonics. 2024; 13(14):2575-2590.

PMID: 39678665 PMC: 11636469. DOI: 10.1515/nanoph-2023-0831.


Cavity-enhanced energy transport in molecular systems.

Sandik G, Feist J, Garcia-Vidal F, Schwartz T Nat Mater. 2024; 24(3):344-355.

PMID: 39122930 DOI: 10.1038/s41563-024-01962-5.


Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling.

Sokolovskii I, Tichauer R, Morozov D, Feist J, Groenhof G Nat Commun. 2023; 14(1):6613.

PMID: 37857599 PMC: 10587084. DOI: 10.1038/s41467-023-42067-y.


The Rise and Current Status of Polaritonic Photochemistry and Photophysics.

Bhuyan R, Mony J, Kotov O, Castellanos G, Gomez Rivas J, Shegai T Chem Rev. 2023; 123(18):10877-10919.

PMID: 37683254 PMC: 10540218. DOI: 10.1021/acs.chemrev.2c00895.


References
1.
Feist J, Garcia-Vidal F . Extraordinary exciton conductance induced by strong coupling. Phys Rev Lett. 2015; 114(19):196402. DOI: 10.1103/PhysRevLett.114.196402. View

2.
Harriman A . Artificial light-harvesting arrays for solar energy conversion. Chem Commun (Camb). 2015; 51(59):11745-56. DOI: 10.1039/c5cc03577e. View

3.
Zhong X, Chervy T, Zhang L, Thomas A, George J, Genet C . Energy Transfer between Spatially Separated Entangled Molecules. Angew Chem Int Ed Engl. 2017; 56(31):9034-9038. PMC: 5575472. DOI: 10.1002/anie.201703539. View

4.
Hutchison J, Schwartz T, Genet C, Devaux E, Ebbesen T . Modifying chemical landscapes by coupling to vacuum fields. Angew Chem Int Ed Engl. 2012; 51(7):1592-6. DOI: 10.1002/anie.201107033. View

5.
Coles D, Somaschi N, Michetti P, Clark C, Lagoudakis P, Savvidis P . Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. Nat Mater. 2014; 13(7):712-9. DOI: 10.1038/nmat3950. View