Surface Hopping Modeling of Charge and Energy Transfer in Active Environments
Overview
Chemistry
Affiliations
An active environment is any atomic or molecular system changing a chromophore's nonadiabatic dynamics compared to the isolated molecule. The action of the environment on the chromophore occurs by changing the potential energy landscape and triggering new energy and charge flows unavailable in the vacuum. Surface hopping is a mixed quantum-classical approach whose extreme flexibility has made it the primary platform for implementing novel methodologies to investigate the nonadiabatic dynamics of a chromophore in active environments. This Perspective paper surveys the latest developments in the field, focusing on charge and energy transfer processes.
A dual experimental-theoretical perspective on ESPT photoacids and their challenges ahead.
Sulzner N, Jung G, Nuernberger P Chem Sci. 2025; 16(4):1560-1596.
PMID: 39759939 PMC: 11697080. DOI: 10.1039/d4sc07148d.
Kochman M J Phys Chem A. 2024; 128(32):6685-6694.
PMID: 39109856 PMC: 11331525. DOI: 10.1021/acs.jpca.4c03693.
Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry.
Curchod B, Orr-Ewing A J Phys Chem A. 2024; 128(32):6613-6635.
PMID: 39021090 PMC: 11331530. DOI: 10.1021/acs.jpca.4c03481.
Excitonic Configuration Interaction: Going Beyond the Frenkel Exciton Model.
Pitesa T, Polonius S, Gonzalez L, Mai S J Chem Theory Comput. 2024; 20(13):5609-5634.
PMID: 38885637 PMC: 11238547. DOI: 10.1021/acs.jctc.4c00157.
A Vision for the Future of Multiscale Modeling.
Capone M, Romanelli M, Castaldo D, Parolin G, Bello A, Gil G ACS Phys Chem Au. 2024; 4(3):202-225.
PMID: 38800726 PMC: 11117712. DOI: 10.1021/acsphyschemau.3c00080.