» Articles » PMID: 33767204

Polariton-assisted Excitation Energy Channeling in Organic Heterojunctions

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Mar 26
PMID 33767204
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Exciton-polaritons are hybrid light-matter states resulting from strong exciton-photon coupling. The wave function of the polariton is a mixture of light and matter, enabling long-range energy transfer between spatially separated chromophores. Moreover, their delocalized nature, inherited from the photon component, has been predicted to enhance exciton transport. Here, we strongly couple an organic heterojunction consisting of energy/electron donor and acceptor materials to the same cavity mode. Using time-resolved spectroscopy and optoelectrical characterization, we show that the rate of exciton harvesting is enhanced with one order of magnitude and the rate of energy transfer in the system is increased two- to threefold in the strong coupling regime. Our results exemplify two means of efficiently channeling excitation energy to a heterojunction interface, where charge separation can occur. This study opens a new door to increase the overall efficiency of light harvesting systems using the tool of strong light-matter interactions.

Citing Articles

Coherent transient exciton transport in disordered polaritonic wires.

Aroeira G, Kairys K, Ribeiro R Nanophotonics. 2024; 13(14):2553-2564.

PMID: 39678656 PMC: 11636474. DOI: 10.1515/nanoph-2023-0797.


Condensation of Exciton-Polaritons in a Bound State in the Continuum: Effects of the Excitation Spot Size and Polariton Transport.

Berghuis A, Boom A, Argante R, Murai S, Gomez Rivas J ACS Nano. 2024; 18(46):31987-31994.

PMID: 39520678 PMC: 11580381. DOI: 10.1021/acsnano.4c09970.


Cavity-enhanced energy transport in molecular systems.

Sandik G, Feist J, Garcia-Vidal F, Schwartz T Nat Mater. 2024; 24(3):344-355.

PMID: 39122930 DOI: 10.1038/s41563-024-01962-5.


Active control of polariton-enabled long-range energy transfer.

Cargioli A, Lednev M, Lavista L, Camposeo A, Sassella A, Pisignano D Nanophotonics. 2024; 13(14):2541-2551.

PMID: 38836104 PMC: 11147494. DOI: 10.1515/nanoph-2023-0677.


Enhancement of the internal quantum efficiency in strongly coupled P3HT-C organic photovoltaic cells using Fabry-Perot cavities with varied cavity confinement.

de Jong L, Berghuis A, Abdelkhalik M, van der Pol T, Wienk M, Janssen R Nanophotonics. 2024; 13(14):2531-2540.

PMID: 38836103 PMC: 11147493. DOI: 10.1515/nanoph-2023-0613.


References
1.
Scholes G, Fleming G, Olaya-Castro A, van Grondelle R . Lessons from nature about solar light harvesting. Nat Chem. 2011; 3(10):763-74. DOI: 10.1038/nchem.1145. View

2.
Liu J, Zhang H, Dong H, Meng L, Jiang L, Jiang L . High mobility emissive organic semiconductor. Nat Commun. 2015; 6:10032. PMC: 4686665. DOI: 10.1038/ncomms10032. View

3.
Hou J, Inganas O, Friend R, Gao F . Organic solar cells based on non-fullerene acceptors. Nat Mater. 2018; 17(2):119-128. DOI: 10.1038/nmat5063. View

4.
Nikolis V, Mischok A, Siegmund B, Kublitski J, Jia X, Benduhn J . Strong light-matter coupling for reduced photon energy losses in organic photovoltaics. Nat Commun. 2019; 10(1):3706. PMC: 6697723. DOI: 10.1038/s41467-019-11717-5. View

5.
Mony J, Hertzog M, Kushwaha K, Borjesson K . Angle-Independent Polariton Emission Lifetime Shown by Perylene Hybridized to the Vacuum Field Inside a Fabry-Pérot Cavity. J Phys Chem C Nanomater Interfaces. 2018; 122(43):24917-24923. PMC: 6234983. DOI: 10.1021/acs.jpcc.8b07283. View