» Articles » PMID: 34650237

The Dynamic, Combinatorial Cis-regulatory Lexicon of Epidermal Differentiation

Abstract

Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook multiomic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep-learning framework to model the cis-regulatory logic of chromatin accessibility. This analysis framework identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter assay analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were enriched in these time-dependent combinatorial motif rules. This integrative approach shows the combinatorial cis-regulatory lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the cis-regulatory code of dynamic gene regulation.

Citing Articles

The Adhesion GPCR ADGRL2 engages Ga13 to Enable Epidermal Differentiation.

Yang X, He F, Porter D, Garbett K, Meyers R, Reynolds D bioRxiv. 2025; .

PMID: 40060693 PMC: 11888183. DOI: 10.1101/2025.02.19.639154.


Comprehensive dissection of cis-regulatory elements in a 2.8 Mb topologically associated domain in six human cancers.

Caragine C, Le V, Mustafa M, Diaz B, Morris J, Muller S Nat Commun. 2025; 16(1):1611.

PMID: 39948336 PMC: 11825950. DOI: 10.1038/s41467-025-56568-5.


ChromBPNet: bias factorized, base-resolution deep learning models of chromatin accessibility reveal cis-regulatory sequence syntax, transcription factor footprints and regulatory variants.

Pampari A, Shcherbina A, Kvon E, Kosicki M, Nair S, Kundu S bioRxiv. 2025; .

PMID: 39829783 PMC: 11741299. DOI: 10.1101/2024.12.25.630221.


Massively parallel characterization of transcriptional regulatory elements.

Agarwal V, Inoue F, Schubach M, Penzar D, Martin B, Dash P Nature. 2025; 639(8054):411-420.

PMID: 39814889 PMC: 11903340. DOI: 10.1038/s41586-024-08430-9.


Splicing to orchestrate cell fate.

Zhang X, Guo Z, Li Y, Xu Y Mol Ther Nucleic Acids. 2025; 36(1):102416.

PMID: 39811494 PMC: 11729663. DOI: 10.1016/j.omtn.2024.102416.


References
1.
Lopez-Pajares V, Yan K, Zarnegar B, Jameson K, Khavari P . Genetic pathways in disorders of epidermal differentiation. Trends Genet. 2012; 29(1):31-40. PMC: 5477429. DOI: 10.1016/j.tig.2012.10.005. View

2.
Truong A, Kretz M, Ridky T, Kimmel R, Khavari P . p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 2006; 20(22):3185-97. PMC: 1635152. DOI: 10.1101/gad.1463206. View

3.
Levine M . Transcriptional enhancers in animal development and evolution. Curr Biol. 2010; 20(17):R754-63. PMC: 4280268. DOI: 10.1016/j.cub.2010.06.070. View

4.
Spitz F, Furlong E . Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012; 13(9):613-26. DOI: 10.1038/nrg3207. View

5.
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A . Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317-30. PMC: 4530010. DOI: 10.1038/nature14248. View