Lin M, Lin L, Lin L, Lin Z, Yan X
Front Med (Lausanne). 2025; 12:1504428.
PMID: 40061376
PMC: 11885233.
DOI: 10.3389/fmed.2025.1504428.
Hanna D, Creswell M, Terry R, Vergamini L, Sardiu M, Du H
World J Urol. 2025; 43(1):151.
PMID: 40047903
DOI: 10.1007/s00345-025-05533-4.
Al-Mashhadani A, Gong Q, Shehaj F, Zhou L
Int J Med Sci. 2025; 22(5):1138-1149.
PMID: 40027191
PMC: 11866541.
DOI: 10.7150/ijms.103892.
Schwehn P, Falter-Braun P
BioData Min. 2025; 18(1):18.
PMID: 40016737
PMC: 11866710.
DOI: 10.1186/s13040-025-00434-z.
Lee C, Chuang C, Chiu H, Chang Y, Tu Y, Lo Y
Int J Med Sci. 2025; 22(4):903-919.
PMID: 39991772
PMC: 11843151.
DOI: 10.7150/ijms.101219.
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics.
Benegas G, Eraslan G, Song Y
bioRxiv. 2025; .
PMID: 39990426
PMC: 11844472.
DOI: 10.1101/2025.02.11.637758.
Learning genotype-phenotype associations from gaps in multi-species sequence alignments.
Islam U, Campelo Dos Santos A, Kanjilal R, Assis R
Brief Bioinform. 2025; 26(1).
PMID: 39976386
PMC: 11840556.
DOI: 10.1093/bib/bbaf022.
Towards an interpretable deep learning model of cancer.
Nilsson A, Meimetis N, Lauffenburger D
NPJ Precis Oncol. 2025; 9(1):46.
PMID: 39948231
PMC: 11825879.
DOI: 10.1038/s41698-025-00822-y.
Interpretable deep learning of single-cell and epigenetic data reveals novel molecular insights in aging.
Li Z, Du Z, Huang D, Teschendorff A
Sci Rep. 2025; 15(1):5048.
PMID: 39934290
PMC: 11814351.
DOI: 10.1038/s41598-025-89646-1.
Appraisal of CRISPR Technology as an Innovative Screening to Therapeutic Toolkit for Genetic Disorders.
Shahid A, Zahra A, Aslam S, Shamim A, Ali W, Aslam B
Mol Biotechnol. 2025; .
PMID: 39894889
DOI: 10.1007/s12033-025-01374-z.
Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning.
Chernigovskaya M, Pavlovic M, Kanduri C, Gielis S, Robert P, Scheffer L
Nucleic Acids Res. 2025; 53(3).
PMID: 39873270
PMC: 11773363.
DOI: 10.1093/nar/gkaf025.
At the nucleus of cancer: how the nuclear envelope controls tumor progression.
Paganelli F, Poli A, Truocchio S, Martelli A, Palumbo C, Lattanzi G
MedComm (2020). 2025; 6(2):e70073.
PMID: 39866838
PMC: 11758262.
DOI: 10.1002/mco2.70073.
Multiscale footprints reveal the organization of cis-regulatory elements.
Hu Y, Horlbeck M, Zhang R, Ma S, Shrestha R, Kartha V
Nature. 2025; 638(8051):779-786.
PMID: 39843737
PMC: 11839466.
DOI: 10.1038/s41586-024-08443-4.
LD-informed deep learning for Alzheimer's gene loci detection using WGS data.
Jo T, Bice P, Nho K, Saykin A
Alzheimers Dement (N Y). 2025; 11(1):e70041.
PMID: 39822590
PMC: 11736638.
DOI: 10.1002/trc2.70041.
Epigenetic ageing clocks: statistical methods and emerging computational challenges.
Teschendorff A, Horvath S
Nat Rev Genet. 2025; .
PMID: 39806006
DOI: 10.1038/s41576-024-00807-w.
The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.
Daoud A, Ben-Hur A
PLoS Comput Biol. 2025; 21(1):e1012755.
PMID: 39792954
PMC: 11756788.
DOI: 10.1371/journal.pcbi.1012755.
Deep learning predicts DNA methylation regulatory variants in specific brain cell types and enhances fine mapping for brain disorders.
Zhou J, Weinberger D, Han S
Sci Adv. 2025; 11(1):eadn1870.
PMID: 39742481
PMC: 11691643.
DOI: 10.1126/sciadv.adn1870.
Advancing Regulatory Genomics With Machine Learning.
Brehelin L
Bioinform Biol Insights. 2024; 18:11779322241249562.
PMID: 39735654
PMC: 11672376.
DOI: 10.1177/11779322241249562.
A review of deep learning models for the prediction of chromatin interactions with DNA and epigenomic profiles.
Wang Y, Kong S, Zhou C, Wang Y, Zhang Y, Fang Y
Brief Bioinform. 2024; 26(1).
PMID: 39708837
PMC: 11663014.
DOI: 10.1093/bib/bbae651.
A self-attention-driven deep learning framework for inference of transcriptional gene regulatory networks.
Liu Y, Zhong L, Yan B, Chen Z, Yu Y, Yu D
Brief Bioinform. 2024; 26(1).
PMID: 39679439
PMC: 11647272.
DOI: 10.1093/bib/bbae639.