» Articles » PMID: 34533267

A Systematic Study of the Effects of Complex Structure on Aryl Iodide Oxidative Addition at Bipyridyl-Ligated Gold(I) Centers

Overview
Specialty Chemistry
Date 2021 Sep 17
PMID 34533267
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

A combined theoretical and experimental approach has been used to study the unusual mechanism of oxidative addition of aryl iodides to [bipyAu(C H )] complexes. The modular nature of this system allowed a systematic assessment of the effects of complex structure. Computational comparisons between cationic gold and the isolobal (neutral) Pd and Pt complexes revealed similar mechanistic features, but with oxidative addition being significantly favored for the group 10 metals. Further differences between Au and Pd were seen in experimental studies: studying reaction rates as a function of electronic and steric properties showed that ligands bearing more electron-poor functionality increase the rate of oxidative addition; in a complementary way, electron-rich aryl iodides give faster rates. This divergence in mechanism compared to Pd suggests that Ar-X oxidative addition with Au can underpin a broad range of new or complementary transformations.

Citing Articles

Electronic Effects of Bidentate ,-Ligands on the Elementary Steps of Au(I)/Au(III) Reactions Relevant to Cross-Coupling Chemistry.

Treacy J, Chao E, Kunkel G, Louis-Goff T, Tilden J, Spokoyny A Org Lett. 2024; 26(50):10875-10879.

PMID: 39651789 PMC: 11668042. DOI: 10.1021/acs.orglett.4c04045.


A Hemilabile NHC-Gold Complex and its Application to the Redox Neutral 1,2-Oxyarylation of Feedstock Alkenes.

Scott S, Cadge J, Boden G, Bower J, Russell C Angew Chem Int Ed Engl. 2023; 62(23):e202301526.

PMID: 36995930 PMC: 10962591. DOI: 10.1002/anie.202301526.


Reductive Elimination Reactions in Gold(III) Complexes Leading to C(sp)-X (X = C, N, P, O, Halogen) Bond Formation: Inner-Sphere vs S2 Pathways.

Portugues A, Martinez-Nortes M, Bautista D, Gonzalez-Herrero P, Gil-Rubio J Inorg Chem. 2023; 62(4):1708-1718.

PMID: 36658748 PMC: 9890567. DOI: 10.1021/acs.inorgchem.2c04166.


Migratory Insertion of CO into a Au-C Bond.

Cadge J, Gates P, Bower J, Russell C J Am Chem Soc. 2022; 144(43):19719-19725.

PMID: 36282061 PMC: 9634805. DOI: 10.1021/jacs.2c10432.


Ligand-enabled oxidation of gold(i) complexes with -quinones.

Szaloki G, Babinot J, Martin-Diaconescu V, Mallet-Ladeira S, Garcia-Rodeja Y, Miqueu K Chem Sci. 2022; 13(35):10499-10505.

PMID: 36277619 PMC: 9473537. DOI: 10.1039/d2sc03724f.


References
1.
Yang Y, Eberle L, Mulks F, Wunsch J, Zimmer M, Rominger F . Trans Influence of Ligands on the Oxidation of Gold(I) Complexes. J Am Chem Soc. 2019; 141(43):17414-17420. DOI: 10.1021/jacs.9b09363. View

2.
Navarro M, Toledo A, Mallet-Ladeira S, Sosa Carrizo E, Miqueu K, Bourissou D . Versatility and adaptative behaviour of the P^N chelating ligand MeDalphos within gold(i) π complexes. Chem Sci. 2021; 11(10):2750-2758. PMC: 8157524. DOI: 10.1039/c9sc06398f. View

3.
Rigoulet M, Thillaye du Boullay O, Amgoune A, Bourissou D . Gold(I)/Gold(III) Catalysis that Merges Oxidative Addition and π-Alkene Activation. Angew Chem Int Ed Engl. 2020; 59(38):16625-16630. DOI: 10.1002/anie.202006074. View

4.
Banerjee S, Bhoyare V, Patil N . Gold and hypervalent iodine(iii): liaisons over a decade for electrophilic functional group transfer reactions. Chem Commun (Camb). 2020; 56(18):2677-2690. DOI: 10.1039/d0cc00106f. View

5.
Kaes C, Katz A, Hosseini M . Bipyridine: the most widely used ligand. A review of molecules comprising at least two 2,2'-bipyridine units. Chem Rev. 2001; 100(10):3553-90. DOI: 10.1021/cr990376z. View