» Articles » PMID: 34417454

Detection and Characterization of Lung Cancer Using Cell-free DNA Fragmentomes

Abstract

Non-invasive approaches for cell-free DNA (cfDNA) assessment provide an opportunity for cancer detection and intervention. Here, we use a machine learning model for detecting tumor-derived cfDNA through genome-wide analyses of cfDNA fragmentation in a prospective study of 365 individuals at risk for lung cancer. We validate the cancer detection model using an independent cohort of 385 non-cancer individuals and 46 lung cancer patients. Combining fragmentation features, clinical risk factors, and CEA levels, followed by CT imaging, detected 94% of patients with cancer across stages and subtypes, including 91% of stage I/II and 96% of stage III/IV, at 80% specificity. Genome-wide fragmentation profiles across ~13,000 ASCL1 transcription factor binding sites distinguished individuals with small cell lung cancer from those with non-small cell lung cancer with high accuracy (AUC = 0.98). A higher fragmentation score represented an independent prognostic indicator of survival. This approach provides a facile avenue for non-invasive detection of lung cancer.

Citing Articles

Multimodal Framework in Lung Cancer Management: Integrating Liquid Biopsy with Traditional Diagnostic Techniques.

Qi W, Tian L, Xu J, Li Z, Wang T Cancer Manag Res. 2025; 17:461-481.

PMID: 40060704 PMC: 11889406. DOI: 10.2147/CMAR.S506630.


Transparency and Representation in Clinical Research Utilizing Artificial Intelligence in Oncology: A Scoping Review.

DAmiano A, Cheunkarndee T, Azoba C, Chen K, Mak R, Perni S Cancer Med. 2025; 14(5):e70728.

PMID: 40059400 PMC: 11891267. DOI: 10.1002/cam4.70728.


A deep-learning model for quantifying circulating tumour DNA from the density distribution of DNA-fragment lengths.

Zhu G, Rahman C, Getty V, Odinokov D, Baruah P, Carrie H Nat Biomed Eng. 2025; .

PMID: 40055581 DOI: 10.1038/s41551-025-01370-3.


Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection.

Bruhm D, Vulpescu N, Foda Z, Phallen J, Scharpf R, Velculescu V Nat Rev Cancer. 2025; .

PMID: 40038442 DOI: 10.1038/s41568-025-00795-x.


Circulating cell-free DNA methylation profiles as noninvasive multiple sclerosis biomarkers: A proof-of-concept study.

Fu H, Huang K, Zhu W, Zhang L, Bandaru R, Wang L medRxiv. 2025; .

PMID: 40034794 PMC: 11875267. DOI: 10.1101/2025.02.14.25322180.


References
1.
DAddario G, Fruh M, Reck M, Baumann P, Klepetko W, Felip E . Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010; 21 Suppl 5:v116-9. DOI: 10.1093/annonc/mdq189. View

2.
Jiang L, Huang J, Higgs B, Hu Z, Xiao Z, Yao X . Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer. PLoS Genet. 2016; 12(4):e1005895. PMC: 4836692. DOI: 10.1371/journal.pgen.1005895. View

3.
Borromeo M, Savage T, Kollipara R, He M, Augustyn A, Osborne J . ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016; 16(5):1259-1272. PMC: 4972690. DOI: 10.1016/j.celrep.2016.06.081. View

4.
Adalsteinsson V, Ha G, Freeman S, Choudhury A, Stover D, Parsons H . Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017; 8(1):1324. PMC: 5673918. DOI: 10.1038/s41467-017-00965-y. View

5.
Cristiano S, Leal A, Phallen J, Fiksel J, Adleff V, Bruhm D . Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019; 570(7761):385-389. PMC: 6774252. DOI: 10.1038/s41586-019-1272-6. View