» Articles » PMID: 34378348

ACE2-Variants Indicate Potential SARS-CoV-2-Susceptibility in Animals: A Molecular Dynamics Study

Overview
Journal Mol Inform
Date 2021 Aug 11
PMID 34378348
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to be a global threat, causing millions of deaths worldwide. SARS-CoV-2 is an enveloped virus with spike (S) glycoproteins conferring binding to the host cell's angiotensin-converting enzyme 2 (ACE2), which is critical for cellular entry. The host range of the virus extends well beyond humans and non-human primates. Natural and experimental infections have confirmed the high susceptibility of cats, ferrets, and Syrian hamsters, whereas dogs, mice, rats, pigs, and chickens are refractory to SARS-CoV-2 infection. To investigate the underlying reason for the variable susceptibility observed in different species, we have developed molecular descriptors to efficiently analyse dynamic simulation models of complexes between SARS-CoV-2 S and ACE2. Our extensive analyses represent the first systematic structure-based approach that allows predictions of species susceptibility to SARS-CoV-2 infection.

Citing Articles

Variations in Cell Surface ACE2 Levels Alter Direct Binding of SARS-CoV-2 Spike Protein and Viral Infectivity: Implications for Measuring Spike Protein Interactions with Animal ACE2 Orthologs.

Kazemi S, Lopez-Munoz A, Holly J, Jin L, Yewdell J, Dolan B J Virol. 2022; 96(17):e0025622.

PMID: 36000847 PMC: 9472623. DOI: 10.1128/jvi.00256-22.


Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review.

Rutherford C, Kafle P, Soos C, Epp T, Bradford L, Jenkins E Environ Health Insights. 2022; 16:11786302221107786.

PMID: 35782319 PMC: 9247998. DOI: 10.1177/11786302221107786.


De Novo-Whole Genome Assembly of the Roborovski Dwarf Hamster (Phodopus roborovskii) Genome: An Animal Model for Severe/Critical COVID-19.

Andreotti S, Altmuller J, Quedenau C, Borodina T, Nouailles G, Teixeira Alves L Genome Biol Evol. 2022; 14(7).

PMID: 35778793 PMC: 9254642. DOI: 10.1093/gbe/evac100.


Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.

Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y Chem Rev. 2022; 122(13):11287-11368.

PMID: 35594413 PMC: 9159519. DOI: 10.1021/acs.chemrev.1c00965.


Molecular recognition of SARS-CoV-2 spike glycoprotein: quantum chemical hot spot and epitope analyses.

Watanabe C, Okiyama Y, Tanaka S, Fukuzawa K, Honma T Chem Sci. 2022; 12(13):4722-4739.

PMID: 35355624 PMC: 8892577. DOI: 10.1039/d0sc06528e.


References
1.
Trimpert J, Vladimirova D, Dietert K, Abdelgawad A, Kunec D, Dokel S . The Roborovski Dwarf Hamster Is A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection. Cell Rep. 2020; 33(10):108488. PMC: 7674129. DOI: 10.1016/j.celrep.2020.108488. View

2.
Ramachandran G, Ramakrishnan C, Sasisekharan V . Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963; 7:95-9. DOI: 10.1016/s0022-2836(63)80023-6. View

3.
Labute P . The generalized Born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area. J Comput Chem. 2008; 29(10):1693-8. DOI: 10.1002/jcc.20933. View

4.
Wan Y, Shang J, Graham R, Baric R, Li F . Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020; 94(7). PMC: 7081895. DOI: 10.1128/JVI.00127-20. View

5.
Zhang Z, Zhang Y, Liu K, Li Y, Lu Q, Wang Q . The molecular basis for SARS-CoV-2 binding to dog ACE2. Nat Commun. 2021; 12(1):4195. PMC: 8263772. DOI: 10.1038/s41467-021-24326-y. View