Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus
Overview
Affiliations
Recently, a novel coronavirus (2019-nCoV) has emerged from Wuhan, China, causing symptoms in humans similar to those caused by severe acute respiratory syndrome coronavirus (SARS-CoV). Since the SARS-CoV outbreak in 2002, extensive structural analyses have revealed key atomic-level interactions between the SARS-CoV spike protein receptor-binding domain (RBD) and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. Here, we analyzed the potential receptor usage by 2019-nCoV, based on the rich knowledge about SARS-CoV and the newly released sequence of 2019-nCoV. First, the sequence of 2019-nCoV RBD, including its receptor-binding motif (RBM) that directly contacts ACE2, is similar to that of SARS-CoV, strongly suggesting that 2019-nCoV uses ACE2 as its receptor. Second, several critical residues in 2019-nCoV RBM (particularly Gln493) provide favorable interactions with human ACE2, consistent with 2019-nCoV's capacity for human cell infection. Third, several other critical residues in 2019-nCoV RBM (particularly Asn501) are compatible with, but not ideal for, binding human ACE2, suggesting that 2019-nCoV has acquired some capacity for human-to-human transmission. Last, while phylogenetic analysis indicates a bat origin of 2019-nCoV, 2019-nCoV also potentially recognizes ACE2 from a diversity of animal species (except mice and rats), implicating these animal species as possible intermediate hosts or animal models for 2019-nCoV infections. These analyses provide insights into the receptor usage, cell entry, host cell infectivity and animal origin of 2019-nCoV and may help epidemic surveillance and preventive measures against 2019-nCoV. The recent emergence of Wuhan coronavirus (2019-nCoV) puts the world on alert. 2019-nCoV is reminiscent of the SARS-CoV outbreak in 2002 to 2003. Our decade-long structural studies on the receptor recognition by SARS-CoV have identified key interactions between SARS-CoV spike protein and its host receptor angiotensin-converting enzyme 2 (ACE2), which regulate both the cross-species and human-to-human transmissions of SARS-CoV. One of the goals of SARS-CoV research was to build an atomic-level iterative framework of virus-receptor interactions to facilitate epidemic surveillance, predict species-specific receptor usage, and identify potential animal hosts and animal models of viruses. Based on the sequence of 2019-nCoV spike protein, we apply this predictive framework to provide novel insights into the receptor usage and likely host range of 2019-nCoV. This study provides a robust test of this reiterative framework, providing the basic, translational, and public health research communities with predictive insights that may help study and battle this novel 2019-nCoV.
Kalhor H, Mokhtarian M, Rahimi H, Shahbazi B, Kalhor R, Komeili Movahed T Iran J Pharm Res. 2025; 23(1):e150879.
PMID: 40066112 PMC: 11892749. DOI: 10.5812/ijpr-150879.
Evolving Landscape of Emerging Virus Diagnosis: Challenges and Innovations.
Kumar A, Saini S, Anvikar A, Mishra N, Misra G Mol Biotechnol. 2025; .
PMID: 40042766 DOI: 10.1007/s12033-025-01385-w.
Fan Y, Duan Y, Zhang A, Wang Y Medicine (Baltimore). 2025; 104(7):e41550.
PMID: 39960901 PMC: 11835096. DOI: 10.1097/MD.0000000000041550.
Yang J, Song I, Saito M, Hartanto T, Ichinohe T, Fukuda S Gut Microbiome (Camb). 2025; 6:e1.
PMID: 39944118 PMC: 11810603. DOI: 10.1017/gmb.2024.7.
Minerals and Human Health: From Deficiency to Toxicity.
Razzaque M, Wimalawansa S Nutrients. 2025; 17(3).
PMID: 39940312 PMC: 11820417. DOI: 10.3390/nu17030454.