» Articles » PMID: 34362918

Sc-compReg Enables the Comparison of Gene Regulatory Networks Between Conditions Using Single-cell Data

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Aug 7
PMID 34362918
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The comparison of gene regulatory networks between diseased versus healthy individuals or between two different treatments is an important scientific problem. Here, we propose sc-compReg as a method for the comparative analysis of gene expression regulatory networks between two conditions using single cell gene expression (scRNA-seq) and single cell chromatin accessibility data (scATAC-seq). Our software, sc-compReg, can be used as a stand-alone package that provides joint clustering and embedding of the cells from both scRNA-seq and scATAC-seq, and the construction of differential regulatory networks across two conditions. We apply the method to compare the gene regulatory networks of an individual with chronic lymphocytic leukemia (CLL) versus a healthy control. The analysis reveals a tumor-specific B cell subpopulation in the CLL patient and identifies TOX2 as a potential regulator of this subpopulation.

Citing Articles

CoTF-reg reveals cooperative transcription factors in oligodendrocyte gene regulation using single-cell multi-omics.

Choi J, Svaren J, Wang D Commun Biol. 2025; 8(1):181.

PMID: 39910206 PMC: 11799153. DOI: 10.1038/s42003-025-07570-6.


A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Xi X, Li J, Jia J, Meng Q, Li C, Wang X Nat Commun. 2025; 16(1):1284.

PMID: 39900922 PMC: 11790924. DOI: 10.1038/s41467-025-56475-9.


Integration of single-cell transcriptome and chromatin accessibility and its application on tumor investigation.

Yang C, Jin Y, Yin Y Life Med. 2025; 3(2):lnae015.

PMID: 39872661 PMC: 11749461. DOI: 10.1093/lifemedi/lnae015.


Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods.

Karamveer , Uzun Y Bioinform Biol Insights. 2024; 18:11779322241287120.

PMID: 39502448 PMC: 11536393. DOI: 10.1177/11779322241287120.


Small data methods in omics: the power of one.

Johnston K, Grieco S, Nie Q, Theis F, Xu X Nat Methods. 2024; 21(9):1597-1602.

PMID: 39174710 DOI: 10.1038/s41592-024-02390-8.


References
1.
Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy A, Chang H . Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci U S A. 2018; 115(30):7723-7728. PMC: 6065048. DOI: 10.1073/pnas.1805681115. View

2.
Fuller T, Ghazalpour A, Aten J, Drake T, Lusis A, Horvath S . Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome. 2007; 18(6-7):463-72. PMC: 1998880. DOI: 10.1007/s00335-007-9043-3. View

3.
Wang C, Sun D, Huang X, Wan C, Li Z, Han Y . Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol. 2020; 21(1):198. PMC: 7412809. DOI: 10.1186/s13059-020-02116-x. View

4.
Buenrostro J, Wu B, Litzenburger U, Ruff D, Gonzales M, Snyder M . Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-90. PMC: 4685948. DOI: 10.1038/nature14590. View

5.
Duren Z, Chen X, Jiang R, Wang Y, Wong W . Modeling gene regulation from paired expression and chromatin accessibility data. Proc Natl Acad Sci U S A. 2017; 114(25):E4914-E4923. PMC: 5488952. DOI: 10.1073/pnas.1704553114. View