» Articles » PMID: 34343564

Integrated Multiomics Analysis Identifies Molecular Landscape Perturbations During Hyperammonemia in Skeletal Muscle and Myotubes

Abstract

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.

Citing Articles

Ammonia transporter RhBG initiates downstream signaling and functional responses by activating NFκB.

Mishra S, Welch N, Singh S, Singh K, Bellar A, Kumar A Proc Natl Acad Sci U S A. 2024; 121(31):e2314760121.

PMID: 39052834 PMC: 11294993. DOI: 10.1073/pnas.2314760121.


Differential impact of sex on regulation of skeletal muscle mitochondrial function and protein homeostasis by hypoxia-inducible factor-1α in normoxia.

Welch N, Mishra S, Bellar A, Kannan P, Gopan A, Goudarzi M J Physiol. 2024; 602(12):2763-2806.

PMID: 38761133 PMC: 11178475. DOI: 10.1113/JP285339.


Ammonia Toxicity and Associated Protein Oxidation: A Single-Cell Surface Enhanced Raman Spectroscopy Study.

Redolfi-Bristol D, Mangiameli A, Yamamoto K, Marin E, Zhu W, Mazda O Chem Res Toxicol. 2023; 37(1):117-125.

PMID: 38146714 PMC: 10792663. DOI: 10.1021/acs.chemrestox.3c00368.


Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview.

Milanese J, Marcotte R, Costain W, Kablar B, Drouin S Adv Anat Embryol Cell Biol. 2023; 236:21-55.

PMID: 37955770 DOI: 10.1007/978-3-031-38215-4_2.


L-Isoleucine reverses hyperammonemia-induced myotube mitochondrial dysfunction and post-mitotic senescence.

Kumar A, Bellar A, Mishra S, Sekar J, Welch N, Dasarathy S J Nutr Biochem. 2023; 123:109498.

PMID: 37871767 PMC: 10841977. DOI: 10.1016/j.jnutbio.2023.109498.